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Fuchs and Peres [2000]

Contrary to those desires, quantum theory does not describe physical reality. What
it does is provide an algorithm for computing probabilities for the macroscopic
events (“detector clicks”) that are the consequences of our experimental interven-
tions. This strict definition of the scope of quantum theory is the only interpretation
ever needed, whether by experimenters or theorists.



Preface

Fuchs [2002]

In all cases, a quantum state is specifically and only a mathematical symbol for
capturing a set of beliefs or gambling commitments

Ever since the “discovery” of Quantum Mechanics (QM), the scientist community was shocked
by the effects and strange phenomena emerging from this theory. Almost a century has passed and
we still struggle to understand the surprising features of this theory, one of the most evolving of
our present days, specially in the context of quantum information. This arises from the limits of
classical computation that we face today. After all, information is encoded in a physical system,
whatever it is and in the form we want, so the study of information and computation should be
linked to the study of the underlying physical processes. This point of view is enriched in the
well known statement “It from Bit” first pronounced by John Wheeler suggesting ”the idea that
every item of the physical world has at bottom — at a very deep bottom, in most instances —
an immaterial source and explanation; that what we call reality arises in the last analysis from
the posing of yes-no questions and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and this is a participatory universe”.

Today, we still don’t have a unified view on what is a quantum state and what information
does it encode. But this is a question that has been there since its origins, Einstein was one of the
first who put into question the completeness of quantum mechanics [Einstein et al., 1935]. John
Bell later proved that the hidden variable theory proposed by Einstein was not possible or it would
otherwise violate local realism [Bell, 1964]. Nevertheless, even if we now take QM as a complete
theory of reality, we haven’t been able to discover what a quantum state is. We should content
ourselves with its probabilistic nature.

QM formalism is squeezed into 5 postulates (e.g. see Nielsen and Chuang [2010]) that cover
the rules of a very big game. From these postulates, the scientist community has been able to
move forward with the development of Quantum Field Theory with all its consequences and the
creation of a new field in physics: Quantum Information. Many problems that are encountered in
classical computation were brought to the quantum regime like cloning, teleportation, factoring,
discrimination... “There is a feeling that the advent of quantum information theory heralds a new
way of doing physics and supports the view that information should play a more central role in
our world picture” says Fuchs [2002]. This is certainly a reality, for instance the European Union
set a flagship in 2016 for the next 10 years with a founding of e1 billion∗ to investigate in the
development of certain applications.

We seek to continue this trend with more and more people joining the world wide community
of quantum scientists and engineers.

∗https://qt.eu/about/
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1 It from bit

John Archibald Wheeler, 1990

’It from bit’ symbolizes the idea that every item of the physical world has at bot-
tom—a very deep bottom, in most instances—an immaterial source and expla-
nation; that which we call reality arises in the last analysis from the posing of
yes–no questions and the registering of equipment-evoked responses; in short, that
all things physical are information-theoretic in origin and that this is a participa-
tory universe.

In this chapter, we begin this journey with a discussion on the ultimate limits of computation,
and show how this can lead us to new understanding about universal principles of our reality. The
standard reductionist rationale is that since all physical systems are built from conglomerations
of fundamental particles, the principles governing these such particles will also apply to all such
systems.

The plausible existence of universal systems suggests a complementary approach to the under-
standing of universal principles. If all observable qualities of any physical process may be simulated
by a single system, then the limitations on that system will also be universal limitations that allow
us to make generic statements about what we can observe within our universe. Indeed, there
exists many tasks that universal computers cannot perform. Any computation is facilitated by a
physical process, and any physical process can be thought of as a computation thus by knowing
the computational limits we can have a knowledge on the physical limits of that system.

1.1 Experiements and computation

There is a one-by-one relationship between a computer simulation and an actual physic exper-
iment: the initial configuration of the system correspond to the input bits, the program execution
to the experiment itself and the results we obtain are the output bits.

Every physical experiment is a computation, and every computation is facilitated by some phys-
ical experiment. The class of all possible experiments define the class of all computable functions.
A universal computer is a system capable of computing all functions that can be computed using
any physically realisable system.

This motivates us to only consider models of computation that are physically reasonable. Any
algorithm specified within such a model should admit a physical implementation that is experimen-
tally possible, at least in principle. One postulate on the set of computations we would consider
to be physically reasonable are:

1. Only a finite subsystem of the entire computer is “in motio” at any time.

2. The motion depends only on the state of a finite subsystem.

3. The amount of information used to specify this motion is finite.

These conditions for reasonable physical processes is not a mathematical definition and is
completed dictated by our current knowledge of physics.

1.2 Universal computer: Turing machines

A universal computer is that capable of computing any function that may be computed on a
reasonable model of computation. Such systems not only exists, but can be remarkably simple:
Alan Turing proposed the Turing machine in 1936, a simple device which he claimed to be capable
of performing any algorithmic process.

We can think of a Turing machine as a one dimensional tape divided in finite cells with possible
states Σ. Over one of them, let’s say at the k-th position, there’s a head which is the brain of the
machine. This brain has a possible set of states Q and can only see one cell at a time. Then a
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Turing machine is just a function that maps the current cell state and the head state into a new
cell and brain state and the next cell to look at (left or right cell). Mathematically, this reads

T : Σ×Q −→ {←,→}× Σ×Q
(s, q) −→ (↔, s′, q′)

So by imposing the rules over all the possible values of Σ × Q the machine is programmed and
ready to work, we have created an algorithm the machine strictly follows.∗

From an operational perspective, an algorithm is a set of instructions that a person or indeed,
a sufficient sophisticated machine, can follow, without additional insight. Thus, such a process can
be regarded as a physically realisable experiment, and corresponds to some reasonable model of
computation. This leads to the Church-Turing thesis:

Thesis 1 (Church-Turing). Any function that can be computed by a reasonable model of compu-
tation can be computed by an universal Turing machine.

The Church-Turing thesis is not a theorem, but rather a universal principle whose validity is
based on observation. This implies the following principle

Principle 1 (Church-Turing). Every function that can be computed by a physically reasonable
process can be computed by a Turing Machine.

And coming back to the physical world this turns to

Principle 2 (Deutsch-Church-Turing). Every physically reasonable process can be exactly simu-
lated by a Universal Computing Device.

But, all universal computer are limited by the constrains of the physics and vice versa, so they
must obey the second law of thermodynamics (dS > 0), the theory of relativity†...

1.3 Limits of computation: halting problem

Since any algorithm may be implemented by a Turing machine, any decision problem that no
Turing machine can solve would not be solvable by any reasonable physical process (assuming the
truth of the Church-Turing thesis).

The Halting problem is a classical example of a non-computable problem. No Turing machine
can take an arbitrary Turing machine T and some number x as input, and output with certainty
whether or not T will halt on input x. There exists no algorithm, and hence no physical process,
that would allow us to determine whether a given algorithm will ever end or be trapped in an
infinite loop. These type of machine is often called Oracle‡.

Theorem 1. There exists no Turing machine that can decide whether or not a general Turing
Machine will halt in finite time.

Proof. Let’s proof this by contradiction, we will write a program that does the following:

Require: h(T, x): halting function
Require: x: integer number
halt←− h(h, x)
if halt then

loop forever()
else

halt
end if

We assume at first that there exist such a machine h(T, x) that takes as input a Turing machine
T and some general input x. On top of it we create another Turing machine that does the following:
if T halts on input x then it loops forever and if it loops forever it halts.

∗If you want to try to create your own Turing machine visit https://turingmachinesimulator.com/.
†Later on, we will see how this principles limit the transmission of information.
‡From the Greek mithology, people that transmit messages from gods to humans.
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Now suppose you feed this machine with h itself then two things can happen: if h halts on
input h then it loops forever and if h does not halt on input h then it halt. We end up with a
contradiction in both cases but because our machine is well defined except for the Oracle machine
we conclude that it can’t exist.

This non-computability theorem has a consequence on the physical world:

Theorem 2. There exists no physically realisable process that can decide whether or not a Turing
machine will halt in finite time.

1.4 Rice’s theorem

There’s a generalisation to the halting problem which is Rice’s theorem that says:

Theorem 3 (Rice). Any non-trivial black box property of a Turing machine is non-computable.

Let’s define what we understand by non-trivial black box property. First of all, a property is just
a function that maps each Turing machine into {0, 1}, so it tells us if that certain machine has or
doesn’t have this property. Then, a black box property depends only on the input-output relations
but not on the machine itself, thus if T (x) = T ′(x) for all x we say that P (T ) = P (T ′). Finally,
non-trivial means that there exist other machines such that T (x) 6= T ′′(x), P is not constant.

For example, say that we want to know if a machine T doubles its input for all x (T (x) = 2x),
this is also a non-trivial black box property because it only depends on the input-output and there
exist other machines that don’t do this so the problem is non-computable (just as the halting
problem).

As always, this has a physical consequence that is

Principle 3. (Rice) There exists no reasonable physical process that can determine any given
non-trivial black-box property of a Universal Computer.

Rice’s theorem, together with the Church-Turing thesis, prohibits the existence of any physical
device that could predict the long term behavior of any other device of sufficient complexity.

1.5 Emergence vs. reductionism

When we look at the physical universe around us, we often observe some sort of ‘macroscopic
order’. When we analyse the flow of water, or the dynamics of a glacier, we do not need to compute
the exact motion of every atom. The trick here is that when we observe the macroscopic world,
we generally neglect the microscopic details.

We call these equations macroscopic laws. A reductionist view is that all macroscopic laws
are logically implied by microscopic laws. Since a metal bar is made out of atoms, then the
microscopic laws governing the dynamics of these atoms would allow you to systematically derive
the laws that govern how the bar behaves under stress. Here ‘systematically derive’ implies formal,
mathematical implication. That is, feed the microscopic laws that governed each atom and their
interactions into a computer, along with formal definitions of the macroscopic observables, and
it would eventually be able to output any law that governs those macroscopic observables. The
derivation of macroscopic laws requires no additional ‘insight’ or ‘creativity’.

The idea of emergence is completely opposite to reductionist, it is the belief that not all macro-
scopic laws of physics can be reduced to laws governing their microscopic constituents. Even if we
are given all the fundamental laws of the universe that govern on all fundamental particles – we
may still not be able to derive certain macroscopic phenomena with additional assumptions.

For example, the fundamental interaction of a Universal Computer (say a turing machine or the
game of life as we will see later on) are known however there are macroscopic properties about this
system that are non-computable. In fact, emergence is a consequence of Rice’s thereom because
if we can encode a physical system into a universal computer and the knowledge of an observable
property O of the physical system S reveals the value of some black box property on T , then O is
non-computable.

There is a recipe for demostrating emergence:
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1. Take a macroscopic physical system

2. Demonstrate that its microscopic components interact in a way that is complex enough to
encode a Turing machine

3. Show that a macroscopic property on this physical system is a black-box property of the
underlying Turing machine.

Questions

1. In the standard Turing machine, the head of the tape can move only 1 step left or 1 step
right per time-step. Consider a modified Turing machine where the head of the tape can
point to any point on the potentially infinitely long tape.

This is not a reasonable model of computation. If the head of the tape can point to any point
on the potentially infinitely long tape, the number of instructions for this Turing machine
should be infinite, which is not reasonable.

2. Which of the following properties are non-trivial black-box properties of a Turing machine?

(a) The property that a given Turing machine has a tape.

This is a trivial property which doesn’t depend on the input-output of the machine and
every one of them has.

(b) The property that a given Turing machine always output 5 on input x.

This is a non-trivial black-box properties which only depends on the input-output relations
on a process, so this problem is not computable.

(c) The property that a given Turing machine halt before 30 time-steps.

This is not a black-box property. It depends on the internal structure of a Turing machine
(e.g. the time-step), we just have to wait 30 time-steps and see if it halts or not.

3. Consider a restricted Turing machine T that operates on a tape of length N , where N is
finite. Is the question “Does T halt on input” computable? You may assume that the Turing
machine has a finite number of internal states.

Computable. As the tape has finite length N , the number of the possible states of this restricted
Turing machine is then finite (we use S to represent the number). As long as the time-steps
taken when input x into Turing machine T is larger than S, T will not halt. The reason is
because the machine, in the worst case has gone over all the possible states s ∈ S so after
sS it must start repeating another state s1 and because the rules are well defined after s1 it
will follow s2 and so on until sS and repeat again so it never halts. Otherwise, T will halt
on input x before some certain time-steps. Thus, this question is computable.

4. Is the question, “Given Turing machines T and T ′, does T and T ′ halt on the same inputs?”
for general T and T ′ computable?

Non-computable. If the question “T and T ′ halt on the same input” is computable, we can
assume a specific case where the Turing machine T ′ actually “does nothing” (identity). Then
this question will become the same as the halting problem: “Does T halt on input x”, which
is non-computable. As a result, the original question is non-computable.

5. A Game of Life has been initialized in a way such that there are no living cells outside a
30×30 grid. Consider the question: “Will there ever be alive cells outside this 30×30 grid”.
Is this question computable?

This is the same problem as in question number 3 because there is a finite number of possi-
bilities, thus after 230×30 time-steps we can know the answer to this question.
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2 Computational models

Universal systems are in fact, not very rare at all. In this section, we will review the circuit
model and cellular automata, both of which bear a closer relation to existing computers than the
Turing machine.

2.1 Circuit model

An algorithm that acts on at most n bits of information can be defined by a binary function
fn : {0, 1}n → {0, 1}n. Thus, for a model of computation to be universal, it is sufficient to show
that model can evaluate all binary functions, fn.

Any binary function may be decomposed into logical operations that act on at most two bits.
In fact, a subset of such operations, referred to as elementary logic gates can be concatenated to
evaluate any fn. One such universal gate set involves the operations (see fig. 1): FANOUT, SWAP,
AND and NOT.

Figure 1: Primary logic gates

The two models relate to each other through the notion of uniform circuit families. Given any
particular algorithm defined by a Turing machine T , we may define a family of circuits {Cn} where
the action of Cn coincides with the action T on input of size n. The set of circuits, when taken
together, equate to the action of T .

There are of course more gates than the ones presented like XOR, XAND... but it turns out
that those constitute a universal set, that is all the other gates can be built out of this primitive
ones, which reduces to the following thesis

Thesis 2. Any physical system that can synthesis the following elementary gates is capable of
computation.

2.2 Game of life

The universality of the Game of the Life results from its capacity to implement each of the
operations necessary to construct an arbitrary logic circuit. In particular, one can demonstrate the
existence of gliders, stables configurations of cells that propagate in some fixed sketched direction.
The proof involves designating specific parts of the grid as wires, and encoding 1(0) as the existence
(absence) of gliders on those particular wires. A series of rather ingenious constructions allow one
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create gliders and collide these gliders in specific fashions so that their interaction results the exact
logic interactions required for universality.

While the circuit model appeared rather artificial since it required a careful concatenations of
specific interactions in an exact order, the Game of Life appears more natural. The update rules of
the Game of Life are isotropic, independent of location in the grid. The update rule may even be
interpreted as a primitive model of evolving biological communities (and hence where the model
got its name from). The universality of such a deceptively simple system suggests that universality
may not be a rare trait.

The special thing this game has is that it is unpredictable following Rice’s theorem, the problem
of computing if a given cell will be alive in the future is totally uncomputable because the long
term behaviour of the system can’t be predicted.

2.3 Ising model

Square Ising lattices describe a classical system of spins arranged at the vertices of a d-
dimensional rectangular grid. The state of each spin is described by a single value (0 or 1) and
interacts only with its 2d neighbours.

Mathematically, we index each spin of the 2d square Ising lattice by a vector of integers xij =
(i, j), such that sij ∈ {0, 1} denotes the state of the spin at location xij . Interactions on this lattice
are described by the Hamiltonian H, a function that maps each configuration of the lattice, A, to
a real number. In the setting of magnetism, H(A) would correspond to the potential energy of a
lattice in configuration A.

The general Ising model with an external field has a Hamiltonian of the form

H(S) =
∑
i,j

Mijsij +
∑
i,j

∑
k 6=i
l 6=j

cklijsijskl (2.1)

where cklij is the interaction between spins and Mij the external field applied at position xij . For

the square Ising model, cklij for all spins xij and xkl that are not directly adjacent to each other,
this is (k, l) = {(i+ 1, j), (i− 1, j), (i, j + 1), (i, j − 1)}.

In statistical mechanics, the probability that a system exists in a state A is directly proportional
to exp[−H(A)/(kbT )], where kb is the Boltzmann constant, and T the temperature of the system.
Thus, the lattice tends to be in configurations where H(A) is small. The configurations that
minimize H are referred to as ground states, and represents the possible states of the system at
zero temperature. Observe that it is always possible to label the spin states such that one of the
ground states is 0. Thus, we assert that 0 is a ground state of H with H(0) = 0 without loss of
generality.

Our goal is to encode a graph of spins defining the values of M and c for each spin and vertex
so that when it is cooled down to its ground state the system acts as a defined logical gate.

Designer Ising blocks We make use of Designer Ising blocks, bounded 2-dimensional blocks of
spins with an associated Hamiltonian whose ground state encodes a desired logical operation f .
Input is encoded in bits on one boundary of the block, while output bits on the boundary opposite.
Formally, consider an arbitrary binary function f with m inputs and n outputs; we define a
designer Ising block as follows. Take a C×D block of spins, where C,D > max(m,n), governed by
a Hamiltonian Hf with ground state set Gf . We designate m input spins, s = (s1, . . . , sm) from
the first row to encode the input and n output spins, r = (r1, . . . , rn) from the last row as output.

We say a configuration of the lattice, s, satisfies {s, r} if the input and output spins are in
states s and r respectively. Suppose that

(a) There exists s ∈ Gf that satisfies {s, ·} for each of the 2m possible inputs of f .

(b) Every s ∈ Gf satisfies {s, r = f(s)}.

then we can set the ground state of the Ising block to encode the action of f on any desired
input by appropriately biasing the input spins by external fields. Such an encoding is, in fact,
universal.
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Theorem 4. For any binary function f , we can construct a designer Ising block such that the
conditions (a) and (b) hold.

Proof. The proof of this theorem is done by constructing a set of universal gates as Ising blocks
(see fig. 2), from them we can automatically build more complex circuits.

Figure 2: Ising blocks for a universal set of elementary gates.

Let’s take the NOT gate as an example, the Hamiltonian of the system is

H(si, so) = −si − so + 2siso

where si and so are the input and output bits respectively. Then, the four possibilities are

si so H
0 0 0

0 1 −1

1 0 −1

1 1 0

We have two ground states {(0, 1), (1, 0)}, if the input is 1 then the output is 0 and vice versa.
This is exactly the expected behaviour of a NOT gate which negates the input bit. If we do the
same for the other gates in fig. 2 we’d obtain that the ground states correspond exactly to the
behaviour of the corresponding gate.

Questions

1. Can you write down two sets of elementary gates that are universal?

The two sets are {NOT, AND, XOR, OR} and {NAND, FANOUT, SWAP}. It can be
proved that by just using the second set, you can build all the gates in the first one.

2. The ground state of an Ising lattice is the configuration which has lowest energy. Answer the
following questions:

(a) Consider two Hamiltonians H and H′ = H + C, where C is some constant. Does this
guarantee that H and H′ have the same ground state set?

Yes, they still have the same ground state because all the energies are displaced by the
same amount.

(b) Consider a system with two spins b1 and b2, with the Hamiltonian H(b1, b2) = b1 + b2 −
2b1b2. What is its ground state?

Let’s construct the lookup table (see below). The ground states are {(0, 0), (1, 1)} in fact
this Hamiltonian correspond to a wire (see fig. 2).

11
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si so H
0 0 0

0 1 1

1 0 1

1 1 0

3. Can you write down the Hamiltonian for a n-bit wire, acting on a chain of N spins, such
that at ground state, they are all identically 0, or identically 1?

The complete Hamiltonian for this Ising block will be

H(b1, . . . , bN ) =

N−1∑
i=1

H(bi, bi+1)

where H(bi, bi+1) = bi + bi+1 − 2bibi+1 is the Hamiltonian for one single wire block.

12
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3 Introduction to quantum mechanics

The bit is the fundamental concept of classical computation and classical information. Quantum
computation and quantum information are built upon an analogous concept, the quantum bit, or
qubit for short. What then is a qubit? Just as a classical bit has a state – either 0 or 1 – a qubit
also has a state. Two possible states for a qubit are the states |0〉 and |1〉, which as you might
guess correspond to the states 0 and 1 for a classical bit. The difference between bits and qubits is
that a qubit can be in a state other than |0〉 or |1〉. It is also possible to form linear combinations
of states, often called superposition:

|ψ〉 = α |0〉+ β |1〉 (3.1)

When we measure a qubit we get either the result 0, with probability |α|2, or the result 1, with
probability |β|2. Naturally, |α|2 + |β|2 = 1, since the probabilities must sum to one. Geometrically,
we can interpret this as the condition that the qubit’s state be normalised to length 1. Thus,
in general a qubit’s state is a unit vector in a two-dimensional complex vector space. The basis
{|0〉 , |1〉} is known as the computational basis.

We may write the most general qubit in the form

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (3.2)

where θ, ϕ ∈ R define a point in a 3d sphere of radius 1. This sphere is often called Bloch sphere.

3.1 Observables

A measurement is made by an observable A that has an associated Hermitian matrix or operator
A which acts on the quantum states of some Hilbert space. In the computational basis, the operator
reads A =

∑n
j,k=1 ajk |j〉〈k| where |j〉〈k| is the outer product.

The hermiticity property of all observables allows a spectral decomposition as a sum A =∑
λ aλP̂λ being {aλ} the eigenvalues of A and P̂λ the projector onto the eigenspace spanned by

the eigenvectors corresponding to aλ obeying the orthogonality and completeness relations

P̂λP̂µ = P̂λδλµ (3.3a)∑
λ

P̂λ = Id (3.3b)

If A is a physical observable, then {aλ} are the physical values that we can observe after measuring
a state |ψ〉. The probability that the result aλ is obtained given that the state measured was |ψ〉
is

p(aλ|ψ) = 〈ψ|P̂λ|ψ〉 (3.4)

and it holds that
∑
λ p(aλ|ψ) = 1 on account of eq. (3.3b).Also, the state after the measuremnent

becomes

|ψ′〉 =
P̂λ |ψ〉√
p(aλ|ψ)

(3.5)

The measure is completely defined once the operators {P̂λ} are given, then for each P̂λ we asso-
ciate the hypothesis that the value of the physical property A observed is aλ. This measure is called
projective or von Neumann measure because the elements are orthogonal projectors (eq. (3.3a)).
The number of projectors is limited by the dimension of the space, otherwise the orthogonality
condition wouldn’t be satisfied. For this reason, we define a generalised measurement or Positive-
Operator Value Measure (POVM) as a set of positive operators {Πj}nj=1, with n not necessarily
equal to d, satisfying the completeness and positivity conditions

n∑
j=1

Πj = Id (3.6a)

Πj ≥ 0 ∀j (3.6b)

13
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An observable of H2 is expressed, in the most general form, as a complex linear combination
of the identity matrix I2 and the Pauli matrices {σi}3i=1

∗ which span the space of 2× 2 Hermitian
matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(3.7)

The elements of the computational basis are by convention the eigenvectors of the third Pauli
matrix such that σ3 |0〉 = + |0〉 and σ3 |1〉 = − |1〉.

The Pauli matrices satisfy the product relations

σiσj = δij + iεijkσk (3.8)

[σi, σj ] = 2iεijkσk (3.9)

{σi, σj} = 0 (3.10)

Moreover, the 3 Pauli matrices are the generators of rotations in SU(2), the symmetry group
of qubits. A rotation of a qubit |ψ〉 along the direction n by an angle θ is performed by the unitary
operator

Uθ,n = exp

(
−iθ

2
n · σ

)
= cos

θ

2
I− i sin

θ

2
n · σ (3.11)

Specifically, a rotation of θ = π along the y axis is known as the Hadamard gate that have the
expression

H =
1√
2

(
1 1

1 −1

)
(3.12)

Essentially, it maps the Z basis to the X basis: H |0〉 = |+〉 and H |1〉 = |−〉.
Other impotant gates which are quite very used in the construction of quantum circuits are the

π/2 and π/4 gate represented by the letters S and T respectively. They provide rotations along
the Z axis of the specified angle,

S =

(
1 0

0 i

)
, T =

(
1 0

0 eiπ/4

)
(3.13)

Note that S = T 2.

3.2 Density operator

The density operator language provides a convenient way for describing quantum systems whose
state is not completely known. More precisely, suppose a quantum system is in one of a number
of states |ψk〉 with respective probabilities pk. We shall call {pk, |ψk〉} an ensemble of pure states.
The density operator for the system is defined by the equation

ρ ≡
∑
k

pk |ψk〉〈ψk| (3.14)

The density operator is often known as the density matrix. It turns out that all the postulates of
quantum mechanics can be reformulated in terms of the density operator language.

Suppose that the evolution of a closed quantum system is described by the unitary operator
U . If the system was initially in the state ψk with probability pk then after the evolution has
occurred the system will be in the state U |ψk〉 with probability pk. Thus, the evolution of the
density operator is described by the equation

ρt =
∑
k

pkU |ψk〉 〈ψk|U† = Uρ0U
† (3.15)

∗Sometimes also expressed as {σx, σy , σz}.
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Under this formulation, the probability of finding the state |φ〉 is∗

p(φ) = Tr(ρ |φ〉〈φ|) = 〈φ|ρ|φ〉 (3.16)

and the expectation value of an observable A is

〈A〉 = Tr(Aρ) (3.17)

The density operator contains all the information about a physical system needed to deduce
its output statistics when measured in any basis. This implies that to physical systems with the
same density operator are completely equivalent and indistinguishable.

The properties of the density operator are:

• Hermitian: ρ = ρ†.

• Unit trace: Tr(ρ) = 1, all the probabilities must add to 1.

• Non-negative: 〈φ|ρ|φ〉 ≥ 0 ∀φ, all eigenvalues are real and non-negative.

Classical states Suppose X is a classical random variable described by the probability distri-
bution P (X) where px denotes the probability of finding symbol x. We can express a quantum
source preparing the states |x〉 as

ρX =
∑
x

px |x〉〈x| (3.18)

where the states |x〉 are mutually orthogonal and form a basis, thus the density matrix is diagonal
in this basis. In this situation, we say that ρ is classical with respect to X.

3.3 Weirdness of quantum world: quantum interferometer

Niels Bohr

Everything we call real is made of things that cannot be regarded as real. If quantum
mechanics hasn’t profoundly shocked you, you haven’t understood it yet.

Let’s illustrate some of the surprising properties of the quantum world using the historical
example of the quantum bomb detector.†

Suppose that we have a system like the one in fig. 3, where laser light goes through a 50− 50
beamsplitter (half to the top mirror and half to the bottom mirror) reflects in those mirrors and
joins again in the second beam splitter. Classically, light after each reflection gains a phase of π so
at the end we won’t see light on the upper arm because it interferes destructively; otherwise, all the
light will be on the lower arm because both path interfere constructively. This happens when we
send a continuous beam of photons but what if we send single photons through the interferometer?

Experimentally, it has been found that when one sends a single photon the same interference
pattern is obtained: if the laser is in the upper arm then the photon will exit the system on th
lower arm and vice versa. This makes no sense classically because it means that the photons has
interfered with itself, it has travelled through both arms!! The photon inside the interferometer is
in a superposition of the upper and lower state. This explanation, although it may sound strange,
has been the only reasonable explanation of this phenomena.

Suppose we put a detector in one of the arms inside the interferometer such that if the photon
goes through it we can know. Following our previous statement, it must always “click” because
it crosses both path but it turns out that this is not what actually happens. When we situate a
detector, the interference pattern is lost, the photon is no longer in a superposition of both states
because we are observing it. Now, half of the times goes through the upper arm and half of the
times through the lower arm. Heisenberg resumed this fact in his principle

∗Remember that the trace is invariant under cyclic permutations, Tr(ABC) = Tr(BCA) = Tr(CAB), and that
Tr(A⊗B) = Tr(A) · Tr(B).
†Of course, there are other examples like the double slit experiment but I’m really tired of this experiment.
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Figure 3: Quantum interferometer

Principle 4 (Heisenberg uncertainty principle). The act of measuring a quantum state disturbs
the state.

Let’s look at the consequences this principle has on quantum computer, the fact that by ob-
serving a state we change it and the whole superposition is gone means that if we want to build a
quantum computer it must be isolated from the whole world because any tiny perturbation on a
quantum state may change the expected result.

Thesis 3 (Quantum computing paradox). A quantum computer only does what it is meant to do
if we don’t know what it is doing.

3.4 Entangled states

In general, a physical quantum state is an element of a Hilbert space H with dimension d =
dimH. If {|k〉}k=0,...,d is a basis of this space then, any state |ψ〉 in this space can be constructed
as a lineal superposition of this states with d complex amplitudes {ck = rke

iφk}

|ψ〉 = c0 |0〉+ · · ·+ cd |d〉 =

d∑
k=0

ck |k〉 (3.19)

We’d say that we have 2d degrees of freedom at first sight but that’s not true because we have a
constrain which is 〈ψ|ψ〉 = 1 and we know that any two physical systems which differ only by a
global phase factor are physically identical so there are in fact only 2(d− 1) degrees of freedom.

The way to mix to states is by the tensor product defined as |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 = |ψ1〉 |ψ2〉 =
|ψ1ψ2〉. In vector form, if |ψ1〉 =

∑
ck |k〉 and |ψ2〉 = dk |k〉 then

|Ψ〉 = |ψ1〉 |ψ2〉 =

d∑
k,l=0

ckdl |k〉 |l〉 =

d∑
k,l=0

ψkl |kl〉 (3.20)

Apart from the usual properties (associative, lineal, scalar multiplication...) the most important
is the inner product because each ket interacts only with the one of the same kind

〈Ψ|Ψ〉 = (〈ψ1| 〈ψ2|)(|ψ1〉 |ψ2〉) = 〈ψ1|ψ1〉 〈ψ2|ψ2〉 (3.21)

The question now is how those new states behave under measurements. Suppose we have two
systems A and B with a joined state |Ψ〉 = |ψA〉 |ψB〉 with UA and UB being observable of the
two Hilbert spaces (not that they do not have to be of the same dimension) then UA ⊗ UB is an
observable of the total system where

UA ⊗ UB =

 dA∑
i,j=0

aij |i〉 〈j|

 dB∑
k,l=0

bkl |k〉 〈l|

 =

dA∑
i,j=0

dB∑
k,l=0

aijbkl |i, k〉 〈j, l| (3.22)
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where the new observable has a total dimension of d = dAdB . Following from the previous property,
the expectation value is also taken with respect to the states corresponding to the same system.
If you only want to observe one of the states is as simple as choosing as your observable for that
system the identity, like I⊗ UB .

This is a way of constructing mixed states between systems but note that not all states can be
decomposed into its subsystems, |Φ〉 6= |φ1〉 |φ2〉, this is the origin of entanglement.

Principle 5. A quantum state |Ψ〉 on a n mixed system H⊗n is said to be entangled if there does
exist no |ψ1〉 , . . . , |ψn〉 such that |Ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉.

An example of entangled states are the Bell states

|φ+〉 =
1√
2

(|00〉+ |11〉) (3.23a)

|φ−〉 =
1√
2

(|00〉 − |11〉) (3.23b)

|ψ+〉 =
1√
2

(|01〉+ |10〉) (3.23c)

|ψ−〉 =
1√
2

(|01〉 − |10〉) (3.23d)

the last one of these is also called the singlet as it represents a two state system with spin 0,
invariant under rotations. The way to construct them is by using entangling gates like the C-NOT
(controlled not) gate

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (3.24)

which negates the second qubit if the first one is set to |1〉, so if we apply CX on |+〉 |0〉 the resulting
state is exactly |φ+〉.

Other two qubit quantum gates are the control phase gate CZ and the control swap gate S
which operate on |jk〉 as CZ |jk〉 = (−1)jk |jk〉 and S |jk〉 = |kj〉. In matrix form their expression
is

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , S =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (3.25)

Partial trace The partial trace TrB is a mapping from the density matrices ρAB on a composite
space HA ⊗ HB onto density matrices ρA on HA. It is defined as the linear extension of the
mapping

TrB : MA ⊗MB −→MA Tr(MB) (3.26)

for any matrix MA on HA and MB on HB and Tr indicates the normal trace.
Let {|ai〉} be a basis of HA and {|bi〉} be a basis of HB . Any density matrix ρAB on HA⊗HB

can then be decomposed as ρAB =
∑
ijkl cijkl |ai〉〈aj | ⊗ |bk〉〈bl| and the partial trace reads

ρA = TrB ρ
AB =

∑
ijkl

cijkl |ai〉〈aj | 〈bl|bk〉 (3.27)

which is the density matrix of HA. Note, that Tr(|bk〉〈bl|) = 〈bl|bk〉 is in general complex number
(note the flip of indices).

Take into account that ρAB 6= ρA ⊗ ρB for correlated systems (entagled), equality only occurs
when all the subsystems are uncorrelated.
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For example, consider a general density matrix for two qubits ρAB =
∑1
i,j=0

∑1
k,l=0 ρ

k,l
i,j |i, k〉〈j, l|

with a total dimension of 4×4. According to the previous expression the partial trace is calculated
as

ρA = TrB ρ
AB = (ρ00

00 + ρ01
01) |0〉〈0|+ (ρ00

10 + ρ01
11) |0〉〈1|+ (ρ10

00 + ρ11
01) |1〉〈0|+ (ρ10

10 + ρ11
11) |1〉〈1| (3.28)

On the other hand, the partial trace with respect to A is

ρB = TrA ρ
AB = (ρ00

00 + ρ10
10) |0〉〈0|+ (ρ00

01 + ρ10
11) |0〉〈1|+ (ρ01

00 + ρ11
10) |1〉〈0|+ (ρ01

01 + ρ11
11) |1〉〈1| (3.29)

In matrix form, more user friendly, these results read

ρAB =


ρ00

00 ρ01
00 ρ10

00 ρ11
00

ρ00
01 ρ01

01 ρ10
01 ρ11

01

ρ00
10 ρ01

10 ρ10
10 ρ11

10

ρ00
11 ρ01

11 ρ10
11 ρ11

11

 −→

ρA =

(
ρ00

00 + ρ01
01 ρ10

00 + ρ11
01

ρ00
10 + ρ01

11 ρ10
10 + ρ11

11

)

ρB =

(
ρ00

00 + ρ10
10 ρ01

00 + ρ11
10

ρ00
01 + ρ10

11 ρ01
01 + ρ11

11

) (3.30)

Measuring entangled states As said, the measurement on one quantum state will only apply
to the ket corresponding to the observable used but the other will remain the same. Now suppose
we start with the singlet state ψ− and we want to measure the first qubit with U1 = |0〉〈0| so
UT = |0〉〈0|⊗ IB , obviously the first qubit will collapse to the |0〉 state but due to the entanglement
the second qubit will collapse too (in this case to |1〉). Think of it, we have collapsed the second
qubit without interacting with it, only by measuring the first one.

This is called the locality problem because from special relativity we know that

Principle 6. No physical object can travel faster than light in anu inertial frame.

But quantum mechanics at no point puts any restriction on the maximum distance at which
two entangled systems can collapse thus allowing instantaneous collapsing of states. Can this two
theories agree?

The answer is yes, but first let’s consider the consequences of instant or faster-than-light com-
munication. If this existed then causality will be broken and you could send messages to the past
because any signal sent will be received before it was actually sent. To overcome this issue the
Einstein-Podolsky-Rosen was born.

3.5 EPR theory and Bell inequality

The EPR theory came because Einstein (& friends) weren’t really happy how quantum me-
chanics could break its beautiful theory of relativity. Einstein, Podolsky and Rosen (EPR) came
up with a temporarily solution with what they termed “elements of reality”. Their belief was that
any such element of reality must be represented in any complete physical theory. The goal of the
argument was to show that quantum mechanics is not a complete physical theory, by identifying
elements of reality that were not included in quantum mechanics.

The way they attempted to do this was by introducing what they claimed was a sufficient
condition for a physical property to be an element of reality, namely, that it be possible to predict
with certainty the value that property will have, immediately before measurement. In simpler
words, that any entangled state will have prior to any measurement all the possible outcomes in
the so called hidden variables.∗

The key to this experimental invalidation is a result known as Bell’s inequality. To obtain
Bell’s inequality, we’re going to do a thought experiment, which we will analyse using our common
sense notions of how the world works – the sort of notions Einstein and his collaborators thought
nature ought to obey. After we have done the common sense analysis, we will perform a quantum
mechanical analysis which we can show is not consistent with the common sense analysis. Nature
can then be asked, by means of a real experiment, to decide between our common sense notions of
how the world works, and quantum mechanics.

∗Spoiler, nature itself invalidates this point of view while agreeing with quantum mechanics.
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We start with some kind of referee who prepares two particles and sends one of them to Alice
and one of them to Bob. Alice will randomly choose A1 and A2 to measure her particle while
Bob will also randomly choose between B1 and B2. For simplicity, the result of all four observable
will be either 1 or −1 and they are made at the same time (in causally disconnected frames of
reference). Let’s say that they lose 1 coin if they agree when choosing A1 and B2 but win 1 coin
if they agree in the other cases, the quantity to be computed is z = a1b1 + a2b1 + a2b2 − a1b2.

EPR approach This is the same as saying the classical approach. Considering z, it can be
expressed as z = (a1 +a2)b1 +(a2−a1)b2 but because a1, a2 = ±1 either a1 +a2 = 0 or a1−a2 = 0
so in both cases we conclude that z = ±2. If p(a1, a2, b1, b2) is the probability that, before the
measurements are performed, the system is in the state a1, a2, b1, b2 then the expectation value for
z is

〈z〉 =
∑

a1,a2,b1,b2

p(a1, a2, b1, b2)(a1b1 + a2b1 + a2b2 − a1b2) ≤ 2 (3.31)

in fact −2 < 〈z〉 < 2. But we can also express this expectation value like

〈z〉 = 〈A1B1〉+ 〈A2B1〉+ 〈A2B2〉 − 〈A1B2〉 ≤ 2 (3.32)

This is the so called Bell inequality. By repeating the experiment many times, Alice and Bob can
determine each quantity on the left hand side of Bell inequality.

Quantum approach Suppose the two particles are entangled in the singlet state |ψ−〉 and the
observables of Alice and Bob are chosen to be

A1 = Z1 , B1 =
1√
2

(Z2 +X2)

A2 = X1 , B2 =
1√
2

(Z2 −X2)

(3.33)

The expectation value of the 4 separate quantities is easy to calculate, here we present the calculus
for the first one 〈A1B1〉:

〈A1B1〉 =
1√
2
〈Z1 ⊗ (Z2 +X2)〉 =

1√
2

(〈Z1Z2〉+ 〈Z1X2〉)

=
1

2
[(〈Z1〉0 〈Z2〉1 − 〈Z1〉1 〈Z2〉0) + (〈Z1〉0 〈X2〉1 − 〈Z1〉1 〈X2〉0)]

=
1

2
[(−1− (−1)) + (〈X2〉1 + 〈X2〉0)]

=

√
2

2

(
〈0|+ 〈1|√

2

)
X2

(
|0〉+ |1〉√

2

)
=

1√
2
〈+|X2|+〉 =

1√
2

With similar calculations for the other values, the resulting expectations values are 〈A2B1〉 =
〈A2B2〉 = 1/

√
2 and 〈A1B2〉 = −1/

√
2. Thus, the expectation value of the quantity z is

〈z〉 =
3√
2

+
1√
2

= 2
√

2 (3.34)

Which is greater than what any classical theory would predict.
Now it’s time to do ask nature which of the two inequalities is satisfied and it turns out that

Bell inequality (〈z〉 ≤ 2) is not obeyed by nature implying that some of the assumptions made are
not correct, either

1. Realism: the assumption that the physical properties A1, A2, B1 nad B2 have definite values
a1, a2, b1, b2 which exist independent of observation, or
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2. Locality: the assumption that Alice performing her measurement does not influence the
result of Bob’s measurement.

Indeed, Bell’s inequality by quantum mechanics is not a proof of its non locality. Quantum
theory is essentially local. Bell’s discovery was that any realistic theory that could mimic quantum
mechanics would necessarily be non local [Fuchs and Peres, 2000].

Locality vs. realism These two assumptions made are the key point of Bell inequality so one
of them must be wrong, physicist tend to say that the world is not locally realistic. Either we have
to assume that there are no hidden variables that govern the evolution of each particle from its
birth (free will) or that the collapsing of the wave function must be done instantaneously.

How can we overcome this issue? Well, in quantum information theories the way of not violating
the theory of relativity is by saying that information can’t travel faster than light. Think of two
observers which share an entangled state but they are very far away from each other so light takes
some observable amount of time to reach them. Suppose Alice observe her qubit and sees a +1
then Alice knows that Bob’s qubit will be at the state −1, now she sends a message to Bob telling
him the state of his qubit. This message has to be send using light so only at a maximum velocity
of c Bob can know that Alice has collapsed the wavefunction, allowing Bob to measure a definite
state for his qubit without breaking causality [Sakurai and Napolitano, 2017].

Let’s try to prove this formally, we want to see that it’s not possible for Bob to gain any infor-
mation after Alice has collapsed her qubit. Suppose they are sharing the state |Ψ〉 =

∑
ij cij |i〉 |j〉,

after Alice has measured |k〉 the new state is |ψk〉 =
∑
ij cij 〈k|i〉 |j〉 /

√
pk so the density matrix of

Bob is

ρB =
∑
k

|ψk〉〈ψk| =
∑

i,j,i′,j′

cijc
∗
i′j′ 〈i′|

(∑
k

|k〉〈k|

)
|i〉 |j〉〈j′| =

∑
j,j′

∑
i

cijcij′ |j〉〈j′|

Note that the dependence on |k〉 has been removed from the density matrix thus Bob has no
knowledge on what Alice has measured before. From this it is argued that, statistically, Bob
cannot tell the difference between what Alice did and a random measurement (or whether she did
anything at all).

Principle 7. Without knowledge of Alice’s measurement result, Bob can’t gain any information
about which basis Alice has measured in.

In our example, Alice and Bob share the Bell state |ψ−〉 so the density matrix of the system is

ρAB =
1

2


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 (3.35)

where we see that both systems are clearly entangled but when we calculate the local density
matrix (what each of them see) we obtain

ρA =
1

2

(
1 0

0 1

)
, ρB =

1

2

(
1 0

0 1

)
(3.36)

Locally, Alice and Bob see completely random measurements outcomes regardless of the measure-
ment basis. So, to conclude this section let’s state that

Theorem 5 (No-communication theorem). It is impossible to communicate information from one
space-like event to another.

The no-communication theorem states that it is not possible to transmit classical bits of in-
formation by means of carefully prepared mixed or pure states, whether entangled or not. The
theorem disallows all communication, not just faster-than-light communication, by means of shared
quantum states.
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3.6 No cloning theorem

Quantum cloning is a process that takes an arbitrary, unknown quantum state and makes an
exact copy without altering the original state in any way. The process of quantum cloning is
described by:

Uc |ψ〉 |i〉 = |ψ〉 |ψ〉 (3.37)

where Uc is the actual cloning operation, |ψ〉 is the state to be cloned, and |i〉 is the initial state
of the copy.

The question is, is there a unitary operator Uc capable of cloning a general quantum state?
Well, sometimes. For an actual cloning, it is only possible to build a cloning gate for orthogonal
states.

Proof. Consider two states |ψ〉 and |φ〉 together with the copy state |i〉. If this general operator
exist then: |Ψ〉 = Uc |ψ〉 |i〉 = |ψ〉 |ψ〉 and |Φ〉 = Uc |φ〉 |i〉 = |φ〉 |φ〉. Taking the inner product 〈Φ|Ψ〉
we have on one hand (〈φ|ψ〉)2 but on the other hand 〈i| 〈φ|U†cU |ψ〉 |i〉 = 〈φ|ψ〉 so 〈φ|ψ〉 = (〈φ|ψ〉)2.
This has only two solutions: either 〈φ|ψ〉 = 1 ⇒ |ψ〉 = |φ〉, the machine only works with the one
and only state |ψ〉; or 〈φ|ψ〉 = 0, so cloned states must be orthogonal.

Notice that this result still allows cloning but it states that it’s impossible to construct a general
cloning machine that works for any state.

Of course, there are more sophisticate methods that work by doing an approximate copy of the
input state up to certain accuracy.
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4 Quantum State Discrimination

Fundamental properties of quantum mechanics make it impossible to perfectly distinguish non-
orthogonal quantum states. Note that, if state discrimination was perfect, it would imply that
quantum cloning could be done perfectly or that quantum entanglement would lead to instanta-
neous communication [Gisin, 1998]. For instance, the BB84 quantum key distribution scheme [Ben-
nett and Brassard, 2014] is based in sending photons polarised in two non-orthogonal basis, usually
the Z and X basis∗. Because of the non-orthogonality and the impossibility to distinguish perfectly
quantum states, an eavesdropper that intercepts the message without any knowledge on the basis
the photons were encoded on, won’t be able to read the full sentence. Indeed, if she receives a
photon polarised in the X direction but she measures, unconsciously, in the Z direction there will
be a 50% chance of mistake. Ultimately, one is forced to make a guess and it is the necessity of
this guess that makes quantum mechanics intrinsically indeterministic.

Another example is quantum cloning, if that could be done perfectly then we would be able to
generate n copies of two non-orthogonal quantum states |ψ〉 and |φ〉. Since they are not orthogonal,
we can’t perfectly discriminate a single pair of them. However, if n copies are considered, then the
overlap of the composite system goes as |〈ψ|φ〉|n which tends to 0 as the number of copies increases.
Therefore, because a general quantum state cannot be cloned, state discrimination cannot be done
perfectly.

The question now is, how can we best discriminate different quantum states? We can’t certainly
predict the result of a measurement, however, the foundations of quantum mechanics gives us with
accuracy the probabilities of those outcomes. These follow some classical probability distribution
and with the help of classical information theory we could find ways to distinguish them. The
idea is to vary over the measurements that we make on a system to find the one that makes the
classical distinguishability the best it can be [Fuchs, 1996].

4.1 On the notion of distance

First of all, it is not possible to go to the Hilbert space, put a ruler between quantum states and
decide from this whether they are the same or not, just because a posterior measurement might
change its nature. In any case, we can define a pseudo-distance between two general states ρ and
ρ′ as

D(ρ, ρ′) = ‖ρ− ρ′‖1 (4.1)

which is the so called trace distance [Nielsen and Chuang, 2010], denoting by ‖A‖1 the trace norm
(or norm one)

‖A‖1 = tr
√
AA† =

∑
λ

|aλ| (4.2)

where {aλ} are the eigenvalues of A.

Properties

• Non-negative: D(ρ, ρ′) ≥ 0, with equality only when ρ = ρ′.

• Symmetric: D(ρ, ρ′) = D(ρ′, ρ).

• Triangle inequality: D(ρ, ρ′) ≤ D(ρ, σ) +D(σ, ρ′).

• Convexity: D(
∑
i piρi, σ) ≤

∑
i piD(ρi, σi).

Two quantum states are said to be close to each other if the trace distance is near zero. If the
states are qubits, with state vector r and r′ respectively, the expression (4.1) reduces to

D(ρr, ρr′) =
‖r − r′‖2

2
(4.3)

where ‖a‖2 =
∑
k |ak|

2
is the usual vector norm (or norm two). Notice that this pseudo-distance

is half the ordinary distance between two points inside a sphere.

∗Defined as the eigenvalues of the Pauli matrices σz and σx respectively.
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A second definition of pseudo-distance is the fidelity F defined for two ρ, ρ′ ∈ H as

F (ρ, ρ′) =

[
tr
√√

ρρ′
√
ρ

]2

(4.4)

That has a much simpler form if ρ′ = |φ〉〈φ|,

F (ρ, |φ〉〈φ|) = 〈φ|ρ|φ〉 (4.5)

and even simpler if ρ = |ψ〉〈ψ|,
F (|ψ〉 , |φ〉) = |〈ψ|φ〉|2 (4.6)

The previous expression give us an intuitive view of F , it measures the overlap of two states ρ and
ρ′, in other words, how much information of ρ′ is contained in ρ (and vice-versa).

Although it is not clear from the definition, the fidelity is symmetric and is restricted to be in
the range [0, 1]. If F (ρ, ρ′) = 1 we can say that ρ = ρ′ (up to a global phase) but the interpretation
of F (ρ, ρ′) = 0 is not clear, only in the case where both states are pure then F = 0 implies that
the states are orthogonal.

Properties

• Symmetric: F (ρ, ρ′) = F (ρ′, ρ).

• Multiplicative under tensor product: F (ρ⊗ ρ′, σ ⊗ σ′) = F (ρ, σ)F (ρ′, σ′).

• Invariant under unitary operation: F (UρU†, Uρ′U†) = F (ρ, ρ′).

The fidelity is sometimes usefull to impose an upper and lower bound on the trace distance as
it holds that

1− F (ρ, ρ′) ≤ D(ρ, ρ′) ≤
√

1− F 2(ρ, ρ′) (4.7)

Even though the trace distance is very useful from the mathematical perspective, it doesn’t
provide us with a clear intuition of the quantity of information, this is when the concept of Shannon
entropy comes in. Consider a set of events X = (pk, xk)

n
k=1, then the minimal amount of bits that

are needed to encode X is given by the Shannon entropy [Nielsen and Chuang, 2010]

H(X) = −
n∑
k=1

pk log2 pk (4.8)

At the quantum level, this definition is replaced by the Von-Neuman entropy S(ρ). Again, consider
an ensemble of pure states Ξ = {(ξk, |ψk〉)} with density matrix ρk, then the Von-Neuman entropy
is Von-Neuman entropy

S(ρ) ≡ − tr[ρ log2 ρ] = −
n∑
i=1

pi log2 pi (4.9)

The second identity is true when p = {p1, . . . , pn} are the eigenvalues of ρ but they need not be
equal to {ξ1, . . . , ξn, this will be the case only when the states in the ensemble Ξ are mutually
orthogonal.

Then, the amount of information shared between X and Y is

I(X : Y ) = H(X) +H(Y )−H(X,Y ) (4.10)

where H(X,Y ) = −
∑
x,y p(x, y) log2 p(x, y).

The most interesting result is that the mutual information I has an upper bound that restricts
the amount of information that two quantum states can share. This result was first proved by
Holevo [1973b], although a simple proof has been done by Fuchs and Caves [1994]. Here, we will
just state the main result in the form of a theorem:
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Theorem 6 (Holevo bound). Suppose Alice prepares a state ρX where X = 1, . . . , n with prob-
ability ξX . Bob performs a measurement described by POVM elements {Πy} on that state with
measurement outcome Y . The Holevo bound states that for any such measurement Bob may do

I(X : Y ) ≤ S(ρ)−
∑
x

ξxS(ρx) (4.11)

where ρ =
∑
x ξxρx.

The right hand side of eq. (4.11) is usually called the Holevo χ quantity and it is easily proved
[see Nielsen and Chuang, 2010, sec 11.3.2] to be strictly less than H(X), the mutual information
is strictly smaller than the initial information, i.e. I(X : Y ) < H(X). This is a milestone result
because it tells us that no matter which measure we do on the system, we will never be capable
of completely determining X from the results Y , the information after the measurement is always
reduced. However, in this thesis, we will try to get close to this limiting value.

In fact, all the subsequent work could be done using the mutual information instead of the
success probability as a measure to distinguish two state. Fuchs [1996], in his thesis, does this with
5 functions that measure in some way the distinguishability, including the mutual information.
This is just to remark that there is nothing special in using one or another, just that some are
simpler than others from the mathematical point of view.

4.2 Quantum Hypothesis Testing

Consider that Alice prepares one state of some ensemble Ξ = {ξk, ρk}nk=1, all living in a d-
dimensional Hilbert space Hd. The probability that Alice chooses ρk is ξk, with

∑
k ξk = 1. After

that, this state is send to Bob who is asked to distinguish it among the states inside the set Ξ. In
Bob’s hands, the system is described by the mixed state

ρ =

n∑
k=1

ξkρk (4.12)

Bob can perform any measurement on the state, the most general form of such measurement is
a POVM measure M = {Πj}mj=1 satisfying eqs. (3.6a) and (3.6b). Note that, m is not in general
equal to n (the number of states), but it can be greater or smaller. This number is related to
the number of hypothesis that can be made. For instance, if m > n then we can assign to a
combination of multiple outcomes of our measurement the same ρk ∈ Ξ. On the other hand, if
m < n then there will be some states for which we will have to make a guess, unless we know that
they occur with 0 probability.

If the Πj are orthogonal projectors (ΠiΠj = δijΠi), then M is a von Neumann measure and
m ≤ n, but they do not have to be. As an example, the operators Πj = I/d associated to the
no-measurement strategy are clearly not projectors.

Actually, it is found by Davies [1978] that the number of POVM elements m needed to distin-
guish n pure states is bounded between n ≤ m ≤ n2 for linearly independent states. The number
of POVM operators can be any inside this range but the process becomes an arduous task if the
optimisation needs to be made also on the number of hypothesis. For simplicity, in our problem,
we will fix m = n, i.e. the number of hypothesis is the same as the number of states, where j is the
proposition that the state was ρj . We can do this because, even if m was greater than the number
of states, we could group the operators from our hypothesis to build only n operators verifying
eqs. (3.6a) and (3.6b).

The probability of outcome j (Πj) conditional that the given state was ρk is

p(j | k) = p(M = Πj | Ξ = ρk) = tr(Πjρk) (4.13)

Therefore, the state k will be successfully identified whenever the hypothesis Πk is selected
which happens with probability p(k | k). Putting all together, it follows that the probability of
correctly guessing the state is

Ps =

n∑
k=1

ξk tr(Πkρk) (4.14)
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and because the states Ξ are not mutually orthogonal, there will be non-zero probability of failure
(measure of an incorrect state): 0 ≤ Ps ≤ 1. The expression for the error probability is just
Pe = 1− Ps.

4.3 Optimality conditions

In general, a measureM will give us some success probability (4.14) which will be suboptimal.
We seek to find the POVM that maximises the success probability. It has been found by Holevo
[1973a] that the optimal operators must satisfy the conditions

Πj(ξjρj − ξkρk)Πk = 0 ∀j, k = 1, . . . ,m (4.15)

Γ− ξkρk ≥ 0 ∀k = 1, . . . , N (4.16)

with the definition of the so called Lagrange operator

Γ =

n∑
k=1

ξkΠkρk (4.17)

which places the role of a Lagrange multiplier taking account of the constraint (3.6a). It can be
shown from the first condition that the Lagrange operator is hermitian. Take the sum over j and
k in eq. (4.15), because Πj = Π†j and ρk = ρ†k, we are left with Γ† − Γ = 0 proving the hermiticity
of the Lagrange operator. Indeed, eqs. (4.15) and (4.16) are not independent but the first can be
derived from the second.

In fact, the first condition (4.15) can also be written, by summing over j, in terms of the
Lagrange operator Γ as

(Γ− ξkρk)Πk = 0 ∀k = 1, . . . ,m (4.18)

which gives us a way to determine the operators Πk once Γ is known. Indeed, both Πk and Γ−ξkρk
are positive operators, and thus eq. (4.18) can hold only if they are orthogonal, that is Πk lays
entirely within the kernel of Γ− ξkρk [Weir et al., 2017].

Equation (4.16) gives a necessary and sufficient condition for an optimal measurement, while
eq. (4.15) gives only a necessary condition. In our posterior work, we will seek to find such
measurement whose Lagrange operator Γ (4.17) is hermitian and for all the initial states in the
ensemble Ξ we have that the second Holevo condition is verified.

4.4 Ambiguous vs. unambiguous state discrimination

In the problem of quantum state discrimination, there are two major techniques: minimum
error discrimination (MED) and unambiguous state discrimination (USD). The former approach,
also named ambiguous state discrimination, consist on minimising the probability of guessing a
wrong result Pe, which can sometimes be achieved by not making any measurement at all and
randomly guessing the result. In contrast, the latter has no error, if hypothesis Πj is obtained
we are 100% sure of that the state was ρj , yet we allow the possibility of an inconclusive result
by introducing an extra operator Π?. The two tasks are equally valid, the use of one or another
only depends on the requirements of the problem. For example, in situations where we can’t be
wrong we should use USD instead of MED. In fact, there is a correspondence between both as it
is possible to take a MED to a USD [Bagan et al., 2012].

Unambiguous state discrimination forces the operators to satisfy tr(Πjρk) = 0 if j 6= k, this is
not possible in general since both Πj and ρk are positive operators. Only when the states {ρk}nk=1

have disjoint kernels, ker(ρk)∩ ker(ρl) = ∅ ∀k 6= l, USD would be possible [Raynal, 2006; Rudolph
et al., 2003]. Therefore, in what follows, we will be working in the context of MED which now
proceed to explain in more detail.

In Section 4.2, the form of the success probability was deduced. It follows that the probability
of error is Pe = 1−Ps, so finding the minimum Pe is the same as maximising the success probability
as a function of the measure,

Ps = max
M

n∑
k=1

ξk tr(Πkρk) (4.19)
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under the conditions eqs. (3.6a) and (3.6b). Putting the sum inside the trace, we identify the
operator to be maximised as Γ and from eq. (4.16) we can rewrite the problem as that of finding

Ps = min
Γ

tr Γ (4.20)

subject to the constraints Γ− ξkρk ≥ 0.
The meaning of this is that, for an arbitrary set of positive observables {Πj} that add up to the

identity, we can construct the corresponding Lagrange operator. However, only the one which is
optimal according to the relation eq. (4.16) will give the maximum probability. Even though two
measures M and M′, with Γ and Γ′ respectively, are found to be optimal, the success probability
will still be the same [Helstrom, 1969].

Equation (4.19) may look like a tour de force to the reader, having to maximise over all the
possible measures. It happens that this is as complicated as it seems, very few analytical solutions
are found while most of the results in quantum discrimination problems are found using numerical
methods like Semi-Definite Programming. The analytical solutions are only well known for the case
of discrimination between two states or for geometrically uniform states. For example, the case
of two states was first found by Helstrom who provided an exact value for the success probability
[Helstrom, 1969] which we will reproduce in the following section. Then, Bae and Kwek [2015];
Barnett [2001] showed a minimum-error discrimination strategy between multiply symmetric states
with a deeper study of the so called three mirror-symmetric states [Andersson et al., 2002; Chou,
2004; Ha and Kwon, 2013]. For a general number of states, there are unambiguous strategies
found by Chefles and Barnett [1998] when the states are linearly independent and for minimum
error discrimination, it is found that the discrimination between n qubit states can be divided into
patches of only 4 qubits with a known optimal solution [Weir et al., 2017]. Also, Deconinck and
Terhal [2010] provide a geometrical representation of the optimal measure in the Bloch sphere.

4.5 Two-state discrimination

It is instructive to work out the solution to the simplest problem in QSD following the process
explained previously. We will evaluate the maximum success probability for the case of two general
states Ξ = {(ξ1, ρ1), (ξ2, ρ2)} and then give some simplified versions for when the states are pure,
qubits∗... The measure is made up of only two positive operators {Π1,Π2} that satisfy Π1+Π2 = I.
The maximum guess probability is given by eq. (4.20) where the Lagrange operator is

Γ = ξ1Π1ρ1 + ξ2Π2ρ2

but using the completeness relation, the dependence in one of the operators can be removed. Write{
Γ+ = ξ2ρ2 + Π1X

Γ− = ξ1ρ1 −Π2X

defining
X = ξ1ρ1 − ξ2ρ2 (4.21)

Although the process can be done with Γ+ or Γ−, it is convenient to symmetrise those expres-
sions and write the Lagrange operator for the problem as

Γ =
1

2
(Γ+ + Γ−) =

1

2
(ρ+ ΛX) (4.22)

where ρ = ξ1ρ1 + ξ2ρ2 and Λ = Π1 − Π2. The original POVM operators are related to Λ by
Π1 = (I + Π)/2 and Π2 = (I−Π)/2; while Π1,Π2 ≥ 0 the condition over Λ is that −I ≤ Λ ≤ I.

Putting all together, the success probability becomes

Ps = max
Π

tr Γ =
1

2

(
1 + max

Λ
tr ΛX

)
(4.23)

∗The following is not restricted to two dimensional spaces but is general to any two level system in a Hd.
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From the definition of X, because ρ1 and ρ2 are positive, its eigenvalues can be divided into
positive and negative parts. Denoting by X+ (X−) the subspace spanned by the eigenspace of
positive (negative) eigenvalues and λ+ (λ−, in absolute value) its sum, by the spectral theorem X
reads X = λ+X+ − λ−X− where X+, X− ≥ 0. Thus, the optimal measurement Λ is the one that
projects the positive subspace to itself and flips the sign of the negative part, i.e. Λ = X+ −X−.
Finally, the success probability is [Bae and Kwek, 2015]

Ps =
1

2
(1 + λ+ + λ−) =

1

2
+

1

2
‖X‖1 (4.24)

and the POVM consists on
M = {Π1 = X+, Π2 = X−} (4.25)

where we have used that X+ + X− = I. Equation (4.24) is known as the Helstrom bound and
establishes the best success probability to discriminate two mixed states [Helstrom, 1969] which
depends only on the trace distance between the two.

It is easily checked that this measure is indeed optimal by constructing the Lagrange operator
from eq. (4.22) using the measure found in eq. (4.25), it follows that

Γ =
1

2
[ρ+ (X+ −X−)X] =

1

2
ρ+

1

2
(λ+X+ + λ−X−) (4.26)

Then, for the two states in Ξ the Holevo condition reads

Γ− ξ1ρ1 =
1

2
(−ξ1ρ1 + ξ2ρ2) +

1

2
ΛX = −1

2
X +

1

2
ΛX = λ−X− ≥ 0

Γ− ξ2ρ2 =
1

2
(ξ1ρ1 − ξ2ρ2) +

1

2
ΛX =

1

2
X +

1

2
ΛX = λ+X+ ≥ 0

Since the Holevo conditions are satisfied, we can be sure that the measure (4.25) is optimal.
We should be careful with the previous result (4.25) since there may be cases where all eigenval-

ues are positive or negative if the a priori probabilities are different. Then, one of the eigenspaces
will be the full space, in fact, it will correspond to the hypothesis of the state with maximum
probability. The result is telling us not to waste any effort at all in measuring because we have
enough information beforehand to achieve the maximum success probability by just guessing the
state with maximum probability.

Of course, eq. (4.24) is much simplified when specific cases are considered. For example, if the
states have a priori equal probabilities ξ1 = ξ2 = 1/2, the success probability is

Ps =
1

2
+

1

4
‖ρ1 − ρ2‖1 (4.27)

For qubits with state vector r1 and r2 respectively

Ps =
1

2
+

1

4
|p1 − p2 + ‖ξ1r1 − ξ2r2‖2|+

1

4
|p1 − p2 − ‖ξ1r1 − ξ2r2‖2| (4.28)

which, for the case of equal a priori probabilities, reduces to

Ps =
1

2
+

1

2
‖r1 − r2‖2 (4.29)

Finally, if ρ1 and ρ2 are pure states |ψ1〉 and |ψ2〉 then [Barnett and Croke, 2009]

Ps =
1

2
+

1

2

√
1− 4ξ1ξ2|〈ψ1|ψ2〉|2 (4.30)

All of the above expressions contain a constant term, which doesn’t depend at all of the states,
and another that depends on the difference between them. Thus, whenever they are the same,
i.e. X is the 0 matrix, the probability of success will be just 1/2 which is to just pick one of the
two possible hypothesis at random. In any other situation, the probability will increase, up to its
maximum value.
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5 Quantum computing

Now that we know the basic formalism of quantum mechanics let’s return to the very first
question we have asked: what problems are computable? From the Church-Turing principle, every
physically reasonable process can be computed by a Turing machine. Yet, from a pragmatic
perspective, there is little difference between such non-computable problems and those that would
take more than the length of several human lifetimes, or perhaps the lifetime of the universe, to
solve.

5.1 P vs. NP

Gregory Chaitin

Computer scientists widely believe that P 6= NP, but no proof is known. One could
say that a lot of quasi-empirical evidence points to P not being equal to NP. Should
P 6= NP be adopted as an axiom, then? In effect, this is what the computer science
community has done.

We can classify each of the problems experienced in various scientific disciplines or every day
life as either easy (polynomial, P) or hard (non polynomial, NP). To classify each problem we must
analyse how the time scales with the length of the input, for example:

P Multiplication is considered to be an easy problem because the time scales proportional to
the length of the input.

NP Factoring is considered as a difficult problem as it scales exponentially fast with the length.
This is the reason why most cryptography algorithms are base on factorisation of large
numbers that would take the length of the universe to compute.

Let’s modify a new principle to take this into account.

Principle 8 (Strong Church-Turing). Any reasonable model of computation can be efficiently
simulated on a Turing machine.

Should this thesis be true, then any task that has no efficient solution on a Turing machine
will have no efficient solution in any reasonable model of computation, and is thus guaranteed to
be hard.

For this we define the complexity class P as the set of problems that can be solved efficiently
by a Turing machine. Problems in P are guaranteed to be easy, while problems proven to lie
outside P could be hard, conditioned on the truth of the Strong Church-Turing principle (SCT).
Yet, even this is too optimistic, the reduction of an arbitrary model of computation to a Turing
machine is highly non-trivial. There exists many physically reasonable models of computation
whose computational power remains largely unknown.

For example, it remains an open question whether the addition of a random number generator
to an Turing machine bestows it with greater computational power. Polynomial identity testing
(determining whether a given polynomial is identically 0) has no known efficient solution on Turing
machines, and yet can be solved in polynomial time on its probabilistic extension. This motivates
the introduction of the complexity class BPP (bounded-error, probabilistic, polynomial time), the
class of problems that can be efficiently solved by probabilistic Turing machines.

Principle 9 (Probabilistic Strong Church-Turing). Any reasonable model of computation can be
efficiently simulated on a probabilistic Turing machine.

With the introduction of quantum computing a new class of problems have emerged into a
new complexity class called BQP (bounded quantum polynomial) which represents the class of
problems that have efficient solutions when quantum processes are also permitted. For example,
factoring in a quantum computer can be efficiently solved in order O(n3) using Shor’s algorithm.

Principle 10 (Quantum Strong Church-Turing). Any reasonable model of computation can be
efficiently simulated on a quantum computer.
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5.2 Classical vs. Quantum computation

In classical models of computation, the intrinsic state of a physical system is synonymous with
the observable properties of a system. A string of n bits is the abstraction of a physical system
with 2n possible configurations. In particular, the amount of information that may be extracted
by measurement from the system coincides with the amount of information needed to precisely
define the state of the system (namely n bits).

In contrast, the amount of information needed to precisely define a quantum system far exceeds
that of which can be extracted by measurement. Mathematical representation of the fundamental
unit of quantum information requires more than a single bit while any measurement can only
extract 1 single qubit. To properly define a state on a system on n qubits, such state requires
2n − 2 independent parameters (note the normalisation condition and the global phase). This
leads to the important observation that the amount of information stored within a quantum system
scales exponentially with respect to both (a) the size of the system, and (b) amount of information
retrievable by measurement.

(a) There must be states that cannot be expressed of its individual constituents, entangled states,
this suggests the potential exponential speed-up of the quantum processing. Consider com-
paring the action of flipping the first bit on a bit-string of length n and its quantum analogue:
in the classical system, this action transforms exactly a single bit of information while in a
quantum system 2n−1 flips need to be made.

Proof. Think of it, a general n-qubit can be represented as |ψ〉 = 1
2n/2

∑1
k1,...,kn=0 |k1 · · · kn〉.

If the first qubit is flipped then we will have |ψ〉 = 1
2n/2

∑1
k1,...,kn=0

∣∣k̄1 · · · kn
〉

which means
that 2n/2 qubits have changed.

(b) While an exponential amount of information is being manipulated during a general quantum
process, only a linear amount of bits may be extracted by measurement.

A classical computer operates using boolean functions, for example on n bits fn : {0, 1}n →
{0, 1}n. A computation is specified by a uniform family of such functions {fn}. Analogously,
any quantum process on n qubits is specified by a mapping Un ∈ SU(2n) between two arbitrary
quantum states of the system. A quantum computation is specified by a uniform family of such
operators {Un}. To link the two formalisms observe that any string of classical bits b1b2 . . . can be
encoded within the basis state |b1b2 . . .〉. Also, any fn may be recast as the action of some unitary
operator on a suitable quantum system.

Any model of computation that allows the synthesis of an arbitrary unitary operator Un is
universal. In fact, it is sufficient to synthesise a unitary Uε that is a close approximation to the
desired U .

Theorem 7. A model of quantum computation is universal if for any fixed ε > 0 and any desired
unitary U it is capable of synthesising a Uε such that ‖Uε − U‖ < ε.

For each unitary U we can associate a real number MG(U, ε) (gate complexity) that is the
minimum number of gates from set G required to synthesise U to accuracy ε. If MG(Un, ε) < nd

for some power d implies that {Un} has an efficient solution.
Finally note that, from the nature of quantum mechanics, all unitary operators are reversible:

by knowing the outputs we can exactly determine its inputs. In contrast, classical computation is
not reversible just take a look at the action of the AND gate: if the output is 1 then we know for
sure that the inputs were 1 and 1 but if the output is zero there are 3 possibilities for the inputs.
The implementation of the AND gate in quantum computing is made through the Toffoli gate with
3 inputs and 3 outputs: (a, b, c)→ (a, b, c⊕ ab). For example, if c is set to 1 then the output ∀a, b
is (a, b, 1⊕ ab) = (a, b,¬(ab)) which is the classical NAND gate.

5.3 Universal Quantum Gates

In Section 2 we saw what classical gates constitute a set of universal gates, this is, any arbitrary
function can be build upon them. Our desire is to find what quantum gates are universal for
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quantum computation. First of all, let’s announce the following theorem that will help us reduce
the possibilities [see Nielsen and Chuang, 2010, Section 4.5].

Theorem 8. Any unitary operation U acting on n qubits can be decomposed into Ũ1, . . . , Ũm gates
acting non-trivially in two-dimensional subsystems.

The previous theorem is telling us that, the effect of U on a qubit |ψ〉 ∈ Hn is the same as the
application of Ũ1Ũ2 · · · Ũm on the same state |ψ〉. Therefore, any universal gate can be expressed as
a product of singe or two qubit gates. Single qubit gates are all rotations in the Bloch sphere and
two qubit gates can be a controlled operation on a single qubit like the control-not gate eq. (3.24)
or swap gate (3.25).

The standard set of universal quantum operations contain {H,T,CNOT }. We already saw that
H performed a rotation of π/2 about the y-axis and T a rotation of π/4 around the z-axis. The
rotations around the x-axis are accomplished with HTH that rotates the state π/4 around this
axis. Therefore, with just the two gates we can perform all rotations and thus, al unitary operations
on single qubits. The CNOT is important as it enables to construct entangled states but any other
two-qubit gate can be constructed from it by performing some rotation. For instance, we can
obtain the controlled-phase gate by (I⊗H)CNOT (I⊗H).

Obviously, taking the original gate to a sequence of this gates can be a tough work in most
situations. In general, a circuit on n qubits requires O(n24n) elementary universal gates.

How to construct other gates? It is important to realise that any gate can be expressed in
terms of the universal gates {H,T,CNOT }. Essentially, we need to find a way to simulate the
Pauli gates {X,Y, Z} with just these gates, since then any unitary can be expressed as a complex
combination of Pauli matrices and in turn, as a complex combination of a universal set of gates.

First of all, it is easily seen that the Z gate can be realised as

Z = T 4 (5.1)

Then, using that X = HZH we can express X as

X = HT 4H (5.2)

Finally, for Y we use (3.8) which gives

Y = iXZ = iHT 4HT 4 (5.3)

equal up to a global phase which play no role in the final computation.
The previous represent rotations of π degrees with respect to the z, x and y axis respectively

but we would like to realise a more general kind of rotations as defined in (3.11). This can be done
by noting that

THTH = Rn(θ) , θ = 2 arccos cos[2](π/8) ≈ 0.1744 · · · × 2π (5.4)

where n = (cos(π/8), sin(π/8), cos(π/8)). The key part is that θ is an irrational multiple of 2π,
therefore by applying k times the previous gate we can realise a rotation about n up to the
accuracy that we want. That is, suppose that we want to rotate an angle β then, using that
Rn(θ)k = Rn(kθ), we require |β − kθ| < ε.

Other combinations ofH and T generate rotations along different axis and those, in combination
with the Pauli matrices span all the space of rotations.

Another important issue are the two qubit gates but all of them can be expressed as a product
of CNOT and single qubit gates. For instance, the CZ and SWAP gates ((3.25)) are realised using

CZ = (I⊗H)CijNOT (I⊗H) (5.5)

SWAP = CijNOTC
ji
NOTC

ij
NOT (5.6)

where i is the control qubit and j the target qubit in CijNOT .
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6 Quantum algorithms

In this section we will see some implementations of quantum algorithms, showing the quantum
circuit and the state after each step in the algorithm.

6.1 Teleportation

With the aid of entanglement, our aim is to send a qubit state |φ〉 = α |0〉 + β |1〉 from Alice
to Bob. To do so we will demand that Alice and Bob share an entangled state, for instance |Φ+〉.
Then, the steps are

1. Alice has in her possession the state |φ〉 and part of the state |Φ+〉. She applies a CNOT to
her part of the state, followed by a Hadamard gate on the first qubit. The state after the
gates is

1

2
|00〉 (a0 |0〉+a1 |1〉) +

1

2
|01〉 (a0 |1〉+a1 |0〉) +

1

2
|10〉 (a0 |0〉−a1 |1〉) +

1

2
|11〉 (a0 |1〉−a1 |0〉)

2. Alice measures in the computational basis and collapses the state to one of the four possibil-
ities show above.

3. Alice shares with Bob the result of the measurement, who then applies a rectifying gate to
completely recover the state:

00 I

01 X

10 Z

11 Y

One may wonder if this algorithm breaks the law of relativity as the collapse of the state
happens instantaneously. However, the answer is no, because even the state has collapsed, the
information that allows Bob to recover the state is send trough a classical channel and thus, at
most, travels at the speed of light.

Figure 4: Quantum teleportation circuit.

6.2 Dense coding

We want to show that it is possible to send 2 bits of information using just 1 qubit. To do so,
we will start as in the teleportation algorithm. Alice and Bob share an entangled state |Φ+〉, then
she applies some gates in her state in order to encode the two bits:

00 :
∣∣Φ+

〉
01 :

∣∣Ψ+
〉

= (σx ⊗ I)
∣∣Φ+

〉
10 :

∣∣Ψ−〉 = (σy ⊗ I)
∣∣Φ+

〉
11 :

∣∣Φ−〉 = (σz ⊗ I)
∣∣Φ+

〉
These four states are orthogonal so we can distinguish them perfectly, the only downside is that

either we must bring the qubits together and apply a measurement in the Bell basis. In this way,
Bob finally knows the resulting bits.
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6.3 Quantum parallelism

Quantum parallelism is a fundamental feature of many quantum algorithms, it allows quantum
computers to evaluate a function f(x) for many different values of x simultaneously.

Suppose f(x) : {0, 1} → {0, 1} is a classical one bit function, a convenient way of computing
this function is to consider a two qubit computer at state |a, b〉 to transform it into |a, b⊕ f(a)〉
after some Uf . The first bit (register) is called the data register and the second the target register.
More formally, Uf |a, b〉 = |a, b⊗ f(a)〉 so when b = 0 the second qubit gives exactly the value of
f(a) over the first one.

But think of it, this is in general so the first qubit can be in fact a superposition like |+〉 =
(|0〉+ |1〉)/

√
2 and if b is set to |0〉 then

Uf |+〉 |0〉 =
1√
2

(Uf |0, 0〉+ Uf |1, 0〉) =
1√
2

(|0, f(0)〉+ |1, f(1)〉) (6.1)

This is a remarkable state! The different terms contain information about both f(0) and f(1);
it is almost as if we have evaluated f(x) for two values of x simultaneously, a feature known as
“quantum parallelism”.

Let’s see the general case of n qubits, then the data register can be expressed as

|Xn〉 =
1

2n/2

∑
x

|x〉 ∈ H⊗n (6.2)

where the sum is over all the possible permutations of n bits. A simple way to obtain this state
is by applying a Hadamard transform on each qubit from the initial state |0〉⊗n which produces
an equal superposition of all computational basis states. With only two qubits this is easily seen,
starting with |00〉 we apply H ⊗H obtaining

|X2〉 = (H ⊗H)(|0〉 ⊗ |0〉) =

(
|0〉+ |1〉√

2

)(
|0〉+ |1〉√

2

)
=

1

2
(|00〉+ |01〉+ |10〉+ |11〉) =

1

2

1∑
i,j=0

|ij〉

(6.3)
Preparing the n+1 state |0〉⊗n |0〉, after the Hadamard transform has been applied, the quantum

gate Uf can be computed giving the state

1

2n/2

∑
x

|x〉 |f(x)〉 (6.4)

In some sense, quantum parallelism enables all possible values of the function f to be evaluated
simultaneously, even though we apparently only evaluated f once.

However, this is not still usefull because a measurement of one of the values will produce
a collapsing of all states into one loosing the rest of the information, which is what a classical
computer can already do. Quantum computation requires something more than just quantum
parallelism to be useful; it requires the ability to extract information about more than one value
of f(x) from superposition states.

6.4 Deutsch-Josza algorithm

Bob gives Alice a function f(x) that maps a n bit number onto {0, 1} and promises Alice that it
is either constant (same value for all x) or balanced (0 for exactly half of the inputs). Alice is asked
to decide whether the function f is constant or balanced with certainty and with the minimum
number of evaluations.

Classically, Alice may have to evaluate f(x) at least 2n/2 + 1 times to know exactly the answer
since she may get 2n/2 0s before finally getting a 1. This is the best a deterministic classical
algorithm can do.

From the quantum information perspective we can make use of quantum parallelism, let’s see
step by step what happens. Alice start with the state

|ψ0〉 = |0〉⊗n |1〉 (6.5)
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|0〉 H

Uf

H

|0〉 H H

...
...

|0〉 H H

|1〉 H •

Figure 5: Quantum circuit for the Deutsch-Josza algorithm

and applies a Hadamard transform on all n+ 1 qubits to obtain

|ψ1〉 =
1

2n/2

∑
x

|x〉 |−〉 (6.6)

Next, the function f is evaluated using Uf : |a, b〉 → |a, b⊕ f(a)〉. On a single state |x〉 |−〉 this
gives |x〉 (|f(x)〉 −

∣∣ ¯f(x)
〉
)/
√

2, both f(x) and ¯f(x) are evaluated. Consider f(x) = 0 then the
resulting state is in fact |x〉 |−〉 while if f(x) = 1 then the state is − |x〉 |−〉 so the action of the
operator Uf can be expressed as Uf |x〉 |−〉 = (−1)f(x) |x〉 |−〉. Thus, after the application of the
function the state is

|ψ2〉 =
1

2n/2

2n−1∑
k=0

(−1)f(k) |k〉 |−〉 (6.7)

Finally, wit the given state, let’s calculate the probability of finding |+〉⊗n in this superposition:

p(+ · · ·+) = |〈+ · · ·+|ψ2〉|2

=

∣∣∣∣∣∣ 1

2n/2

1∑
k1,...,kn=0

(−1)f(x) 〈+ · · ·+|k1k2 · · · kn〉

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1

2n/2

1∑
k1,...,kn=0

(−1)f(x)
n∏

m=1

〈+|km〉

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣ 1

2n/2

1∑
k1,...,kn=0

(−1)f(x) 1

2n/2

∣∣∣∣∣∣
2

=

∣∣∣∣∣ 1

2n

2n−1∑
k=0

(−1)f(k)

∣∣∣∣∣
2

Now, if f(x) is constant then p(+ · · ·+) = 1 in either case (f(x) = 0 or f(x) = 1) but if f(x) is
balanced then the terms in the sum will cancel between each other and p(+ · · ·+) = 0.

Alice declares f(x) to be constant if she measures all n qubits to be in |+〉, otherwise she
declares f(x) to be balanced with only 1 evaluation of the function f compared to the exponential
requirement of the classical algorithm.

If our quantum computer only allows measurements in the Z basis (as most do) we need an
extra step in our algorithm as shown in fig. 5. After the application of the unitary we perform
a Hadamard gate in all the states of the first register which will take them again to the Z basis.
After this step, the state will be

• If the function is constant, the factor (−1)f(x) is a global phase and the state after the H⊗n

is just the initial state plus this global phase

|ψ2, c〉 = (−1)f(x) |0 . . . 0〉 |1〉 (6.8)
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• If the function is balanced, the phase factor (−1)f(x) will create a superposition a complicated
superposition which after the application of the Hadamard gate look like

|ψ2,b〉 = 2−n
2n−1∑
x=0

(−1)f(x)
2n−1∑
y=0

(−1)x·y |y〉 |1〉 = 2−n
2n−1∑
y=0

[
2n−1∑
x=0

(−1)f(x)+x·y

]
|y〉 |1〉 (6.9)

The important thing here is that this state is orthogonal to the state |0 . . . 0〉,

〈0 . . . 0|ψ2,b〉 = 2−n
2n−1∑
x=0

(−1)f(x) = 0

because the sum takes half of the times the value 1 and half of the times the value −1, so in
total it averages to 0.

Therefore, if the results of the measurement are all +1 (corresponding to |0〉) we are certain
that the function is constant but if a −1 is obtained (theoretically, half of them should be −1)
then the function is balanced.

6.5 Bernstein-Varizani problem

It’s a restricted version of the Deutsch–Jozsa algorithm where instead of distinguishing between
two different classes of functions, it tries to learn a string encoded in a function.

Suppose we are given a function f : {0, 1}n → {0, 1}n and a secret string s ∈ {0, 1}n such that
f(x) = x · s mod 2. Our goal is to determine s with the minimum number of operations.

A classical analysis implies that we should call the function at least n times, each time with an
sequence that is linearly independent from the previous ones. for instance, the simplest way is to
evaluate the function in the sequences 0 . . . 01, 0 . . . 10,...,10 . . . 0 obtaining the value of one bit in
s directly after each evaluation. This is the same as determining the components of the vector by
multiplying by the elements of the canonical base.

Obviously, quantum parallelism allows us to find s with just one call to f . The quantum circuit
is the same as in the Deutsch-Jozsa algorithm up the obtaining |ψ2〉. At this point the state looks
like

|ψ2〉 =
1

2n/2

2n−1∑
x=0

(−1)x·s |x〉 |−〉 =

 n⊕
j=1

|0〉+ (−1)sj |1〉√
2

⊗ |−〉 (6.10)

where we replaced f(x) by our concrete definition.
Finally, we can either measure the first n qubits in the X basis or apply a Hadamard gate first

and then measure in the Z basis. We will opt for the latter method, removing the last qubit in
|ψ2〉 as it is no longer important for us, the state of the first n becomes

|ψ3〉 = |sn〉 |sn−1〉 · · · |s1〉 (6.11)

This is already telling us what s is, we just need to measure each of the individual states in the Z
basis and reconstruct the string.

The quantum circuit that performs this operation is the same as in the Deutsch-Josza (see
fig. 5) replacing the unitary Uf to that implementing the function in this problem.

6.6 Simon’s problem

This is again a variation of the Deutsch-Jozsa problem, in this case the function is such that
for some unknown string s ∈ {0, 1}n we have f(x) = f(y) ⇔ x = y + s mod 2. Our goals is to
determine s.

If you want to solve the problem classically, you need to find two different inputs x and y for
which f(x) = f(y). There is not necessarily any structure in the function f that would help you
to find two such inputs. At least, you would need to guess O(2n/2) different inputs before being
able to find a pair on which f takes the same output.
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|0〉 /n H⊗n

Uf

H⊗n

|0〉 /n

Figure 6: Quantum circuit for Simon’s problem.

The quantum algorithm that solves this problem starts with the state

|ψ0〉 = |0〉⊗n |0〉⊗n (6.12)

to which we apply a Hadamard on the n first qubits,

|ψ1〉 = H⊗n ⊗ I⊗n |ψ0〉 =
1

2n/2

2n−1∑
x=0

|x〉 |0〉⊗n (6.13)

and evaluate the function f(x) as always

|ψ2〉 = Uf |ψ1〉 =
1

2n/2

2n−1∑
x=0

|x〉 |f(x)〉 (6.14)

Next, we undo the Hadamard operation did before

|ψ3〉 = H⊗n ⊗ I⊗n |ψ2〉 =
1

2n

2n−1∑
x=0

2n−1∑
y=0

(−1)x·y |y〉 |f(x)〉

=

2n−1∑
y=0

|y〉

[
1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

]
(6.15)

The next step in the quantum algorithm is to measure in the first n registers, after this every-
thing is classical processing of the information obtained. To cases must be distinguished:

s = 0n The function f is a one-to-one function, so the probability of obtaining y is given by

py =

∥∥∥∥∥ 1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

∥∥∥∥∥
2

=
1

22n

∥∥∥∥∥
2n−1∑
x=0

(−1)x·y |x〉

∥∥∥∥∥
2

=
1

2n
(6.16)

because f(x) will just reorder the inputs and the sum, because the states are orthogonal, can
interchanged with the modulus which gives 2n in total.

Thus, when s = 0n, we can obtain any y ∈ {0, 1}n with uniform probability 2−n.

s 6= 0n The function is no longer one-to-one, some otputs are repeated. Name S = range(f), then
there must exist 2 distinct values xz, x

′
z such that z = f(xz) = f(x′z) and it is necessary that

xz = x′z + s mod 2. So, the probability for y is

py =

∥∥∥∥∥ 1

2n

2n−1∑
x=0

(−1)x·y |f(x)〉

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

2n

∑
z∈A

[
(−1)xz·y + (−1)x

′
z·y
]
|z)〉

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

2n

∑
z∈A

[
(−1)xz·y + (−1)(xz+s)·y

]
|z)〉

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

2n

∑
z∈A

(−1)xz·y [1 + (−1)s·y] |z)〉

∥∥∥∥∥
2
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Thus, the possible results are

py =

{
2−(n−1) s · y = 0

0 s · y = 1
(6.17)

So, the measurement always returns a string y that satisfies s · y = 0 and the distribution is
uniform over all the strings that satisfy the constraint. However, it is not possible to recover
s yet, but we need more evaluations of Uf . In fact, in the best case we will need n− 1 such
that the system 

s · y1 = 0

s · y2 = 0
...

s · yn−1 = 0

can be solved for s (remember that everything is modulo 2) if the strings y1, . . . , yn−1 are
linearly independent. The probability that they are LI is about 0.289, so if that is not the
cases with just n−1 evaluation, we can continue the process until we have n−1 independent
equations which will quickly happen.

The important conclusion is that we can find s using O(n) evaluations of f(x).

6.7 Trace estimation

Suppose we have a unitary gate U whose eigenvectors are known to be {|uk〉} but its eigenvalues
{λk} are unknown. We want to find the eigenvalues of the operator, notice that given that it is
unitary the eigenvalues can be expressed as {eiφk}. We construct the reversible gate Uc from
U that does the following: if the control qubit is set to |1〉 then it evaluates U on the second
(Uc |1〉 |ϕ〉 = |1〉U |ϕ〉) but if it is set to |0〉 it does nothing.

|0〉 H • H

|uk〉 U

Figure 7: Quantum circuit for the problem.

Let’s initialise the system at the state |ψ0〉 = |0〉 |uk〉 for some |uk〉 and apply the Hadamard
gate on the first qubit, |ψ1〉 = |+〉 |uk〉. Then, we apply the Uc gate on the second obtaining

|ψ2〉 =
1√
2

(|0〉 |uk〉+ |1〉 (U |uk〉)) =
1√
2

(|0〉 |uk〉+ λk |1〉 |uk〉) (6.18)

Finally, another Hadamard gate is applied on the first qubit giving

|ψ3〉 =
1

2
[(1 + λk) |0〉+ (1− λk) |1〉] |uk〉 (6.19)

The simplest way to extract the value of λk is using the expectation value of Z with the last
state

〈Z〉 = 〈ψ3|Z|ψ3〉 =
1

2
(λk + λk) = Re {λk} (6.20)

We were able to evaluate the real part of λk and using the fact that |λk| = 1 also the imaginary
part can be known therefore the complete set of eigenvalues can be known.

In fact, we don’t have to use any |uk〉 at first, we could have used any other set of vectors.
Suppose d = dim(U) and that all the vectors are equally distributed in probability, then the density
matrix is ρu =

∑
pk |uk〉〈uk| = Id/d because {|uk〉} is a complete basis. So we could have used

any other complete basis {|vk〉} (with equally distributed states) to initialise our system because
ρv = Id/d = ρu both systems are equivalent and lead to the same results.
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After a sufficient number N of executions we can estimate the value of Re {[}Tr(U)] with an
accuracy 1/

√
N . That’s in, in each iteration we will get a value Re {(}λk) so after d = dim(U)

iterations the mean between all the values will be s = 1
d

∑d−1
k=0 Re {(}λk) = Re {(}Tr(U)/d) with

some standard deviation σ. Repeating the experiment N times, the mean value would still be s
but the standard deviation would be σ/

√
N ≤ ε for an ε ∝ 1/

√
N .

6.8 Grover search algorithm

Suppose we have a list of values with N elements S = {x1, x2, . . . , xN}, we are asked to find
a certain w ∈ S inside the list. Classically, with a simple linear search, it would take an average
of (N − 1)/2 comparisons to find w, this means an O(N). For small N this may be nice but if
N = 2n the complexity grows exponentially fast.

In the quantum version we are again asked to find an element |w〉 from a list of N = 2n

elements. We are provided with an oracle

f(x) =

{
1 x = w

0 x 6= w
(6.21)

implemented by a unitary operator Uf . Using quantum parallelism we will try to reduce the
number of evaluations of this function as much as possible.

Initially, we don’t know which is the state we are looking for so our situation is of complete
ignorance, this state is represented by an equal superposition of all possible states

|Φ〉 =
1√
N

N−1∑
x=0

|x〉 (6.22)

where one of the |x〉 is our solution |w〉. Then, we can rewrite this state as

|Φ〉 =

√
N − 1

N

∑
x 6=w

|x〉+
1√
N
|w〉 = cos

θ

2
|α〉+ sin

θ

2
|w〉 (6.23)

Did we solve the problem? No, if we measured now in the basis of N elements, the probability of
collapsing to our state is still 1/N .

Next, we apply the Grover’s function G to the previous state defined as

G = KUf (6.24)

where K is called the inversion over the mean operator

K = 2 |Φ〉〈Φ| − I (6.25)

and Uf is the implementation of the oracle

Uf = |α〉〈α| − |w〉〈w| (6.26)

The complete action of G is resumed in the basis {|α〉 , |w〉} as

G =

(
cos θ − sin θ

sin θ cos θ

)
(6.27)

which is just a rotation on the α− w plane of θ degrees.
Then, the application of G over the state |Φ〉 returns the state

G |Φ〉 = cos

(
θ

2
+ θ

)
|α〉+ sin

(
θ

2
+ θ

)
|w〉
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|0〉 /n H⊗n

G

. . .

G

H⊗n

|1〉 H . . .

Figure 8: Quantum circuit implementing Grover’s algorithm.

At this step the probability of finding |w〉 has increased while the probability of finding any other
value has decreased, we are on the right path. We can continue applying G repeatedly until p(w)
maximises. In general, after k iterations the state would be

Gk |Φ〉 = cos

(
θ

2
+ kθ

)
|α〉+ sin

(
θ

2
+ kθ

)
|w〉 (6.28)

where the probability of finding w now is

p(w) = sin2

(
θ

2
+ kθ

)
(6.29)

Maximising this function over k, this is taking p(w) ≈ 1 one deduces that

k ≈ 1

2

(π
θ
− 1
)
≈ 1

2

(π
2

√
N − 1

)
(6.30)

where we used that sin(θ/2) ≈ θ/2 = 1/
√
N .

We can see that the number of iterations, the number of evaluations of f(x) grows as O(
√
N)

which still is exponential for N = 2n but smaller than classically. In fig. 8, the Grover function U
has to be applied this exact number of times to achieve maximum probability in the measure.

The hoe algorithm can be remake for 2 or more possible solutions. Suppose there are M
possibilities, then we could write the state

|ΦM 〉 =

√
N −M
N

|α〉+

√
M

N
|w〉 = cos

θ

2
|α〉+ sin

θ

2
|w〉 (6.31)

where |w〉 is now an equiprobable superposition of all the possible solutions. The algorithm will
be run in the same way, except that now the number of iterations has been reduced to

kM ≈
1

2

(
π

2

√
N

M
− 1

)
(6.32)

It is important to note that finding M > N/2 solutions may lead to incorrect results as the
algorithm will reverse its work and increase the probability of the no-solutions instead of the
solutions. To resolve this error, what we can do is increase the number of items in the list so that
M � N and continue normally.

6.9 Quantum Fourier Transform (QFT)

A discrete version of the Fourier transform can be defined as

x̃k ≡
1√
N

N−1∑
j=0

xje
i2πjk/N (6.33)

where x = (x1, . . . , xN ) is the vector that is being transformed.
The quantum Fourier transform is based on essentially the same idea with the only difference

that the vectors x and x̃ are the state vectors

|x〉 =

N−1∑
j=0

xj |j〉 , |x̃〉 =

N−1∑
k=0

x̃k |k〉 (6.34)
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Then, the action on the components of the state |x〉 is described by

x̃k =
1√
N

N−1∑
j=0

ei2πjk/Nxj (6.35)

In other words the incoming amplitude xj of a given basis vector |k〉 (in original or “positio”
space) is distributed among all basis vector (in Fourier or “momentum” space). What is, however,
different is that both the original vector x and the transformed vector x̃ is recorded using the very
same Hilbert space.

Quantum circuit In the case of quantum computation, the basis vectors |j〉 are the computa-
tional basis vectors for let’s say n-qubits. Then it will be useful to adopt the binary representation

j : (0, 1)→ {0, 1}n where j = 0.(j1, . . . , jm) ≡
m∑
i=1

ji2
−i (6.36)

Then, the Fourier decomposition can be expressed as

|j〉 = |j1j2 . . . jn〉 =
1

2n/2

2n−1∑
k

exp(i2πjk/2n) |k1k2 . . . kn〉

=
1

2n/2

1∑
k1,...,kn=0

exp

[
i2πj

(
n∑
l=1

kl2
n−l

)
2−n

]
|k1 . . . kn〉

=
1

2n/2

1∑
k1,...,kn=0

n⊗
l=1

exp
(
i2πjkl2

−l) |kl〉
=

1

2n/2

n⊗
l=1

1∑
kl=0

exp
(
i2πkl2

−l) |kl〉
=

1

2n/2

n⊗
l=1

[
|0〉+ exp

(
i2πj2−l

)
|1〉
]

=
1

2n/2

n⊗
l=1

[
|0〉+ exp

(
i2π

(
n∑
k=1

jk2n−k

)
2−l

)
|1〉

]

=
1

2n/2

n⊗
l=1

[
|0〉+ exp

(
i2π

(
n∑

k=n−l+1

jk2n−l−k

)
2−l

)
|1〉

]

=
1

2n/2
(
|0〉+ ei2π0.jn |1〉

) (
|0〉+ ei2π0.jn−1jn |1〉

)
· · ·
(
|0〉+ ei2π0.j1j2...jn |1〉

)
The complete quantum circuit can be found in Nielsen and Chuang (chapter 5) which makes

use of Hadamard gates and concatenated rotations of phase

Rk =

(
1 0

0 ei2π/2
k

)
(6.37)

It is possible to see that the number of gates used grows as O(n2) while the best classical algorithm
(FFT) uses exponentially many gates O(n2n).

Of course, keep in mind that not all of the information about the Fourier transformed state
vector can be retrieved.

6.10 Quantum phase estimation

The job of the quantum phase estimation algorithm consist on finding the phase ϕ of an
eigenvalue of U given a known eigenstate |u〉. In fact, we won’t find exactly ϕ, but we will find an
approximation ϕ′ of n bits.
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Figure 9: Quantum Fourier Transform circuit.

In order to do so, we prepare that state

|ψ0〉 = |0〉⊗t |u〉 (6.38)

where t is given by [Nielsen and Chuang, 2010]

t = n+

⌈
log

(
2 +

1

2ε

)⌉
(6.39)

for some small ε.
Then, we create the superposed state by applying the Hadamard gates

|ψ1〉 = 2−t/2
2t−1∑
x=0

|x〉 |u〉 (6.40)

and apply the unitary operator

|ψ2〉 = 2−t/2
2t−1∑
x=0

|x〉Ux |u〉 = 2−t/2
2t−1∑
x=0

ei2πxϕ |x〉 |u〉 (6.41)

Suppose that ϕ has the very special form ϕ = y/2t, then the state |ψ2〉 is just proportional to
the QFT of the state |y〉. Thus, applying the inverse QFT on the first register we obtain

|ψ3〉 = |y〉 |u〉 (6.42)

and so, a measurement of the first register will give us with certainty the value of y and with we
will find the phase ϕ = y/2t.

|0〉 /t H⊗t • QFTt

|u〉 Uf

Figure 10: Quantum circuit for the phase estimation problem.

Of course, the previous is a very special case of ϕ but it helps us to explain the more general
case. In general, ϕ will be a real number and the application of the inverse QFT will output the
state (forgetting about the second register as it is not interesting to us anymore)

|ψ3〉 = 2−t
2t−1∑
x=0

2t−1∑
y=0

e2πixϕe−2πixy/2t)|y〉 = 2−t
2t−1∑
y=0

2t−1∑
x=0

e2πix(ϕ2t−y)/2t

 |y〉 (6.43)
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Then, measuring the state we will obtain the value y with probability

p(y) =

∣∣∣∣∣∣ 1

2t

2t−1∑
x=0

e2πix(ϕ2t−y)/2t

∣∣∣∣∣∣
2

=
1

22t

∣∣∣∣ 1− exp[2πi(ϕ2t − y)]

1− exp[2πi(ϕ2t − y)/2t]

∣∣∣∣2 (6.44)

If we were on the previous case then the only possible value of y would be that satisfying ϕ = y/2t

but here we can only demand to find that y for which ϕ = y2−t + ε for ε < 1 where ε represents
the error made in the approximation. In terms of ε, the probability of finding the closest y is

p(y) =
1

22t

∣∣∣∣1− exp[2πi2tε]

1− exp[2πiε]

∣∣∣∣2 =
1

22t

∣∣∣∣ sin(π2tε)

sin(πε)

∣∣∣∣2 ≥ 1

22t

∣∣∣∣22tε

πε

∣∣∣∣2 =
4

π2
≈ 0.41 (6.45)

where we have used that, if ε ≤ 2−(t+1) then sin(πε) ≤ πε and sinπ2tε ≥ 22tε.
This result shows that we will measure the best t-bit estimate of ϕ with high probability. By

increasing the number of qubits by O(log(1/ε)) and ignoring those last qubits we can increase the
probability to 1− ε.

As we’ve seen, this is not an exact algorithm, it is a method to find an approximation to some
phase. However, it is certainly enough in much occasions as classical computation is also limited
to a certain amount of bit of precision.

6.11 Quantum period finding

Now, suppose we are given a function f(x) : {0, 1}n → {0, 1}n that we know is periodic, this is
f(x) = f(x + kr) for k = 1, . . . , A, but we don’t know the period r. Our task is to find the value
of r with highest probability.

|0〉 /n H⊗n

Uf

QFTn

|0〉 /n

Figure 11: Quantum circuit for the period finding problem.

We shall start with the state
|ψ0〉 = |0〉⊗n |0〉⊗n (6.46)

and apply a Hadamard gate on the first n qubits

|ψ1〉 =
1√
N

N−1∑
x=0

|x〉 |0〉⊗n (6.47)

Then, we evaluate our function using the unitary gate Uf as

|ψ2〉 =
1√
N

N−1∑
x=0

|x〉 |f(x)〉 (6.48)

The tricky part starts, we will measure the state of the second register and suppose we obtain
the value y = f(x). The state will collapse to this exact value but, because there are multiple x
that have the same f(x), we obtain in the first register a superposition of all of them

|ψ3〉 =
1√
A

∑
x|y=f(x)

|x〉 |y〉 =
1√
A

A−1∑
k=0

|x0 + kr〉 |y〉 (6.49)

where x0 if the smallest x that satisfies f(x) = y.
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The next step is to perform the QFT on the first registers which will take us to

|ψ4〉 =
1√
A

A−1∑
k=0

[
1√
N

N−1∑
l=0

ei2π
kl
A |l〉

]
|y〉 =

1√
AN

N−1∑
l=0

[
A−1∑
k=0

ei2π
kl
A

]
|l〉 |y〉 (6.50)

Finally, we will measure in the first register where we will obtain some of the possible values
for l with probability

p(l) =
1

AN

∣∣∣∣∣
A−1∑
k=0

exp

{
i2π

kl

A

}∣∣∣∣∣
2

(6.51)

At this step we are done with all the quantum stuff, our job now is to analyse the result obtained
as to extract the information of the period r from it. We have two possibilities:

N/r ∈ N In this case, the number of elements in the superposition is exactly A = N/r and so eq. (6.51)
is exact. We can show then that, the only possible outcomes of the measurement in l are the
ones that satisfy l = Am. Indeed,

– If l = Am (m ∈ Z), the probability becomes

p(l) =
1

AN

∣∣∣∣∣
A−1∑
k=0

exp

{
i2π

k

A
Am

}∣∣∣∣∣
2

=
1

AN

∣∣∣∣∣
A−1∑
k=0

exp{i2πkm}

∣∣∣∣∣
2

=
1

AN
|A|2 =

A

N
=

1

r

– Instead, if l 6= Am, the probability vanishes as

p(l) =
1

AN

∣∣∣∣ ei2πl − 1

ei2πl/A − 1

∣∣∣∣2 = 0

since the numerator vanishes.

The information that we can extract from this is that, with probability 1/r we obtain the
result l = Am, put in other form, we obtain

l

N
=
m

r
(6.52)

Therefore, by simplifying the fraction l/N we can obtain r in the denominator if r is prime
or a factor of 1/r, but executing the algorithm a second time we can obtain finally r with
high probability.

N/r /∈ N This is a much more complicated case and so we will just state the basic results. It turns
out that when the fraction N/r is not an integer, the probability to obtain a certain value l
is given by

p

(∣∣∣∣ lN − m

r

∣∣∣∣ ≤ 1

2N

)
≥ 4

π2
≈ 0.41 (6.53)

This is saying that, the probability to obtain a value l that, after divide it by N , is close to
a fraction proportional to 1/r is approximately 0.41. In other words, four of every six times
we will obtain a value l that is close to the solution. We can then construct r using a method
of continuous functions that is not really important for us now.

6.12 Shor’s algorithm

In the world we are living, the most used cryptography algorithm used is RSA (explained in
section 8) which is based in the statement that “it is very difficult to factorise large numbers”.
However, if we found some way to efficiently factorise it, then we could decrypt most of the
transactions that are done.

Shor’s algorithm is capable of factorising very large numbers by using the quantum period
finding algorithm and basic number theory. Suppose N is the L-bit number we want to factorise
which we know it is a product of two prime numbers p, q (N = pq). The procedure goes as follow:
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1. Randomly choose x in the range 1 < x < N − 1 such that x is coprime with N , this is,
gcd(x,N) = 1.

2. Use the period finding algorithm to determine the period r of the function f(a) = xa mod N .

3. If r is even and xr/2 + 1 6= 0 mod N then compute gcd(xr/2 − 1, N) and gcd(xr/2 + 1, N)
and test if one of these is a non-trivial factor. If so, we would have found p, then compute
q = N/p. If not, start over again with a different x.

Example Let’s fix N = 91 and choose x = 4, we can check that gcd(4, 91) = 1. First, compute
the period r, we will do so manually by computing f(a) for various a: We see that the period r = 6

a 1 2 3 4 5 6 7 8 9 10 ...

f(x) 4 16 64 74 23 4 16 64 74 23 ...

as the values f(a) start repeating. Once r is known, check that gcd(46/2, 91)+1 = gcd(64, 91)+1 =
64 + 1 = 65 6= 0 mod N . The algorithm has succed and we are ready to find one of the factors of
91 which is p = gcd(43 − 1, 91) = gcd(63, 91) = 7 and the other is q = 91/7 = 13.

Indeed, it seems an algorithm easy to implement but in order to factor out a number we need a
quantum computer with a number of qubits of the order of the length of N which is usually either
210, 211 or 212 for extra security. The largest quantum computer out in the market has 72 qubits,
in the past decade this value was 5, so if the number of qubits multiply by 10 after every decade we
still have to wait around 30 years to see a physical realisation of this algorithm. Moreover, there
already exist algorithms (post-quantum algorithms) for when this time comes.
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7 Quantum information

In this chapter we review the basic definitions and properties of entropy in both classical and
quantum information theory.

7.1 Shannon entropy

The key concept of classical information theory is the Shannon entropy. Suppose we learn
the value of a random variable X. The Shannon entropy of X quantifies how much information
we gain, on average, when we learn the value of X. An alternative view is that the entropy of
X measures the amount of uncertainty about X before we learn its value. These two views are
complementary; we can view the entropy either as a measure of our uncertainty before we learn
the value of X, or as a measure of how much information we have gained after we learn the value
of X.

The Shannon entropy of a variable X is defined by

H(X) = −
∑
x

px log2 px (7.1)

where px is the probability for the event x to occur.∗

The best reason for this definition of entropy is that it can be used to quantify the resources
needed to store information. The Shannon entropy quantifies the expected amount of memory
(bits) that is required to record the values of X. Or, a different interpretation is that it expresses
our ignorance on a test made on that system [Peres, 2006].

Note that, from the definition, it can be seen that Shannon’s entropy is maximum when all
events are equally likely. The uncertainty of the system is maximum because the events are
uncorrelated so, at most, one 1 bit of information is obtained per question (measurement).

Binary entropy Consider the case of two possible states with probability p and 1 − p with
p ∈ [0, 1], the entropy of the system is

H2(p) = −p log p− (1− p) log(1− p) (7.2)

As commented before, H2 has its maximum value at p = 1/2 when they are equally distributed
and goes to zero as p→ 0 or 1. This is because the probability starts increasing for one of the two
possibilities therefore, prior to the experiment, we have some sort of intuition on what the result
will be, reducing the amount of information gained after the experiment.

Joint entropy Now consider two systems X and Y , the joint entropy of the two systems is

H(X,Y ) = −
∑
x,y

p(x, y) log p(x, y) (7.3)

where p(x, y) is the probability that both events x and y happen together. The joint entropy
measures our uncertainty about the pair (X,Y ). But is H(X,Y ) = H(X) +H(Y )?

The answer is yes only when the two systems are uncorrelated, in other words, what happens
on one of the systems doesn’t affect the other. This implies that the uncertainty is maximum
because although we know completely the result of X, Y is still completely unknown (similarly to
what happens in the binary entropy).

What if the two systems are correlated? Then, after knowing some information about X we
would be able to say something about Y . To express the amount of information still unknown, we
define the conditional entropy of X with respect to Y

H(X|Y ) = H(X,Y )−H(Y ) (7.4)

∗Note that we used log base 2 in our definition which is more useful than ln when talking about bits of infor-
mation, so from now on log will explicitly mean base 2 although not indicated.

44



CONTENTS

From the definition it is the total amount of information available minus the information stored
only in Y . The conditional entropy is a measure of how uncertain we are, on average, about the
value of X, given that we know the value of Y .

A second quantity, the mutual information content of X and Y , measures how much infor-
mation X and Y have in common

H(X : Y ) = I(X,Y ) = H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (7.5)

Let’s see some useful properties:

1. H(X,Y ) = H(Y,X) and H(X : Y ) = H(Y : X)

2. H(Y |X) ≥ 0⇒ H(X : Y ) ≤ H(Y ) with equality if and only if Y ⊂ X.

3. H(X) ≤ H(X,Y ) with equality if and only if Y ⊂ X.

4. Subadditivity: H(X,Y ) ≤ H(X) +H(Y ) with equality iif X and Y are independent random
variables.

5. H(Y |X) ≤ H(Y ) ⇒ H(X : Y ) ≥ 0 with equality iif X and Y are independent random
variables.

6. Strong subadditivity: H(X,Y, Z)+H(Y ) ≤ H(X,Y )+H(Y,Z) with equality iif Z → Y → X
forms a Markov chain.

7. Conditioning reduces entropy: H(X|Y,Z) ≤ H(X|Y )

7.2 Von Neumann entropy

The Shannon entropy measures the uncertainty associated with a classical probability dis-
tribution. Quantum states are described in a similar fashion, with density operators replacing
probability distributions. Von Neumann defined the entropy of a quantum state ρ by the formula

S(ρ) = −Tr(ρ log ρ) = −
∑
k

λk log λk (7.6)

given the eigenvalues {λk} of the density matrix ρ.
Suppose ρ and σ are density operators, the relative entropy of ρ with respect to σ is

S(ρ||σ) = Tr(ρ log ρ)− Tr(ρ log σ) (7.7)

which is a measure of distinguishability between two quantum systems. The quantum relative
entropy can sometimes be infinite. In particular, the relative entropy is defined to be +∞ if the
kernel of σ (the vector space spanned by the eigenvectors of σ with eigenvalue 0) has non-trivial
intersection with the support of ρ (the vector space spanned by the eigenvectors of ρ with non-zero
eigenvalue), and is finite otherwise. The quantum relative entropy is non-negative, S(ρ||σ) ≥ 0.

Properties

1. The entropy is non-negative and it is zero iff the state is pure.

2. In a ddimensional Hilbert space the entropy is at most log d with equality iff the system is
in a completely mixed state with ρ = I/d.

3. Suppose a composite system AB is in a pure state, then S(A) = S(B).

4. Joint entropy theorem: suppose pi are probabilities, |i〉 are orthogonal states for a system A
and ρi is any set of density operators for another system B, then

S

(∑
i

pi |i〉〈i| ⊗ ρi

)
= H(pi) +

∑
i

piS(ρi) (7.8)
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5. Given a separable system ρ⊗ σ, the entropy of the complete system is given by

S(ρ⊗ σ) = S(ρ) + S(σ) (7.9)

The joint, conditional and mutual entropy are defined following from their definition of Shannon
entropy

S(X,Y ) = −Tr
(
ρAB log ρAB

)
(7.10)

S(X|Y ) = S(X,Y )− S(Y ) (7.11)

S(X : Y ) = S(X) + S(Y )− S(X,Y ) = S(ρAB ||ρA ⊗ ρB) (7.12)

Qubit What is the entropy of a single quantum bit of information? Think of it, if we only have
one state in that system, there is no randomness at all, no questions have to be asked to the system
because we already know the answer. Therefore, the entropy of a single qubit is 0. Mathematically,
the density matrix of this system would be ρ = |ψ〉〈ψ| with eigenvalue 1 so S(ρ) = 1 log 1 = 0.

Let’s complicate a bit (jeje) the system, what if we have a lineal combination of |0〉 and |1〉?
The answer is still the same, S = 0, because with a rotation we can return to a pure state and as
a rotation is a unitary operation the entropy doesn’t change.

Theorem 9. The entropy of a system doesn’t change under unitary operations U , S(ρ) = S(UρU†).

So, any point in the surface of Bloch sphere has zero entropy, but states get progressively more
mixed as they are moved towards the centre.

Any pair of states that verify 〈ψ|φ〉 > 0 cannot be perfectly distinguished (they have some
correlation). Therefore, a mixture of this states has an entropy less than one. As 〈ψ|φ〉 → 1, the
less distinguishable they are, the less information is stored in them.

Entangled states When entangled states are considered, things change. For example, with
the Bell state |Ψ+〉 each qubit can store one bit S(A) = S(B) = 1 but by knowing one, the
answer to the other is known so S(A,B) = 0. The mutual information is H(A : B) = 2 so
H(A|B) = S(A)−H(A : B) = −1.

Principle 11. An entangled system has negative conditional entropy.

A quantum coin can know more about another system than that system can possibly know
about itself.

7.3 Thermodynamic entropy

It is a well known principle of physics that the entropy of a system always increments

dS ≥ 0 (7.13)

this is called the second law of thermodynamics and equality is only reached in ideal and reversible
process.

Without going into details the entropy of a system with energy Q at temperature T is

dS =
δQ

T
(7.14)

Now, consider that we want to build a machine that takes heat from a cold environment to a
warmer environment. Let Q be the amount of heat transferred from TC to TH (TH > TC) then
the change in entropy of this process is

∆S =
Q

TH
− Q

TC
= Q

TC − TH
TCTH

< 0 (7.15)

Thus, violating the second law of thermodynamics. This is telling us that, naturally, the heat
will transfer from warmer reservoirs to cooler but not vice verse. There exist and arrow of time
indicating the directions of the events.

46



CONTENTS

Maxwell demon (Szilard’s engine) [Maruyama et al., 2009] Consider the quantum informa-
tion variation of this problem. A chamber of volume V contains a gas, which consists of a single
molecule (Fig. 1(a)). As a first step of the process, a thin, massless, adiabatic partition is inserted
into the chamber quickly to divide it into two parts of equal volumes. The demon measures the
position of the molecule, either in the right or in the left side of the partition. The demon records
this result of the measurement for the next step. Then, he connects a load of a certain mass to
the partition on the side where the molecule is supposed to be in, according to his recorded result
of the previous measurement. Keeping the chamber at a constant temperature T by a heat bath,
the demon can let the gas do some work W by quasistatic isothermal expansion (the partition now
works as a piston). The gas returns to its initial state, where it now occupies the whole volume V ,
when the partition reaches the end of the chamber. During the expansion, heat Q is extracted from
the heat bath and thus W = Q as it is an isothermal process. Hence, Szilard’s engine completes a
cycle after extracting heat Q and converting it to an equal amount of mechanical work.

As the gas is expanded isothermally, the amount of extracted work is

W = kBT

∫ V

V/2

dV

V
= kBT ln 2 (7.16)

The factor kBT ln 2 appears often in the following discussions on thermodynamic work, so we will
take it as a unit and call it ‘1 bit’ when there is no risk of confusion. This will be especially useful
when we coordinate discussions of the information theoretic ‘bit’ with the thermodynamic work.

The demon apparently violates the second law. As a result of the perfect conversion of heat Q
into work W , the entropy of the heat bath has been reduced by Q/T = W/T = kB ln 2. According
to the second law, there must be an entropy increase of at least the same amount somewhere
to compensate this apparent decrease. Szilard attributed the source of the entropy increase to
measurement. He wrote, “The amount of entropy generated by the measurement may, of course,
always be greater than this fundamental amount, but not smaller”.

The answer to the demon paradox remain unknown until Charles Bennett in 1982 considered
the role of information processing by the demon. Since information processing must be carried
out by a certain physical system, there should be a one-to-one correspondence between logical
and physical states. Logical states may be described as an abstract set of variables on which
some information processing can be performed. Then, a reversible logical process, which means an
injective (one-to-one) mapping for logical states, corresponds to a reversible physical process.

However, a logically irreversible process is noninjective, i.e. many-to-one, mapping. Such a
process does not have a unique inverse as there may be many possible original states for a single
resulting state. The key here is that memory erasure is a logically irreversible process because
many possible states of memory should be set to a single fixed state after an erasing procedure.

Now, let’s focus on the erasure of information. The physical system for the demon’s memory
can be modelled as a one-molecule gas in a chamber of volume V , which is divided into two parts,
the left L and the right R, by a partition. The demon memorizes the measurement result by setting
the position of the molecule in this box. If the molecule in Szilard’s engine may be found in the
left and the right sides with equal probability, i.e. 1/2, then the minimum amount of work that
needs to be invested and dissipated into the environment is kBT ln 2.

Szilard’s engine turns out to be a isotropic process as ∆S = 0 but in general, for two systems
at temperature TC and TH > TC the maximum efficiency of a machine operating between both
states is

η =
QH −QC

QH
= 1− TC

TH
(7.17)

known as Carnot efficiency, which is the maximum that one can get without violating the second
law of thermodynamics.

Erasure of information The last gedankenexperiment has real consequences in the quantum
information regime.

Principle 12 (Landauer). The erasure of n bits of memory at temperature T requires nkBT ln 2
units of energy.
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This principle is telling us that the storage of information does not come for free but a finite
amount of energy has to be spend in this purpose.

This principle can be generalised to any function f which maps X
f→ Y :

Principle 13. Physical realisation of any function that maps an input x distributed according to
a random variable X to y = f(x) requires energy expenditure of

W = kBTH(X|Y ) ln 2 (7.18)

with H(X|Y ) = H(X)−H(Y ) because H(Y |X) = 0 since Y = f(X).

For example, in a two level system where the entropy is given by h(p) the amount of work that
can be extracted is kBTh(p). Or, think of a XOR gate that maps {00, 11} → 0 and {01, 10} → 1,
the entropy of X is ln 2 but the entropy of Y is ln 1 thus, the amount of bits erased is kBT ln 2.

Maxwell’s demon is now exorcized. The entropy decrease, or the equivalent work the demon
could give us, should be completely consumed to make his memory state come back to its initial
state. The state of the whole system, consisting of the heat engine and the demon, is restored after
completing a thermodynamic cycle, without violating the second law.

Temperature The temperature that appears in the above expression is not our classic tempera-
ture but we should redefine it as the minimal energetic cost needed to erase 1 bit in the environment
so T ∝ E/bit.
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8 Quantum cryptography

In fact, in the following sections, we will explain the most typical protocols for quantum key
distribution which becomes the important step in order to handle a private conversation later on.
The process of encrypting a message is made as in the classical theory, using the RSA algorithm.

The key plays the most important role in cryptography as it enables to securely encrypt and
decrypt information between two parties, usually called Alice and Bob. However, if a malicious
agent, the eavesdropper or Eve in short, has the key then their communication channel is now longer
secure. This type of cryptosystems are called private-key cryptosystems and we will investigate its
security in the following sections.

8.1 Conditions of security

Before heading into actual protocols to share keys and messages we should investigate the
conditions of security, those conditions that will tell us if a communication system is secure.

We will put ourselves in the worst of the cases, Eve has complete control on the channel and
she is able to capture every bit of information that we send. However, she doesn’t know the key
k. Alice wants to send a message m to Bob and uses the encoding function Enc(m, k) = m̃ to
generate a string m̃ which will be send to Bob. He will use the key k and the string m̃ to recover
the original message using a decoding function Dec(m̃, k) = m.

Firstly, Eve has been listening to the whole conversation and knows m̃ perfectly, can she extract
any information on m? The answer to this question has to be negative in all cases, thus we require
that

p(m) = p(m | m̃) (8.1)

which means that the original message m and the encoded string m̃ are completely independent.
Absolutely no information is gained by having access to the channel! If eq. (8.1) is satisfied we say
that the protocol is secure.

Secondly, we must also impose a condition which might seem trivial but without which com-
munication wouldn’t be possible. We must have that

m = Dec(Enc(m, k)) ∀m, k (8.2)

We are always capable of recovering the original message without losing information. If eq. (8.2)
is satisfied we say that the protocol is correct.

The two conditions impose a restriction in the size of the keys, let K be the space of all keys
with total size∗ |K | and let M be the space of all message with total size |M |. Then,

Theorem 10. An encryption scheme (Enc, Dec) is secure and correct if and only if |K | ≥ |M |.

In following section we will always try to find the smallest K that still satisfies the previous
condition to make a scheme secure and correct.

One time pad The simplest example of a secure and correct scheme is the so called one time
pad. Moreover, this protocol saturates the condition of theorem 10.

Suppose Alice wants to send a message m ∈ {0, 1}n to Bob and they both share a key k ∈ {0, 1}n
which is as long as the message. The encryption/decryption scheme work as follows:

Protocol 1. One time pad
A message m ∈ {0, 1}n is encrypted and decrypted using a key k ∈ {0, 1}n with the

operations:

Enc(m, k) = m⊕ k = (m1 ⊕ k1,m2 ⊕ k2, . . . ,mn ⊕ kn) (8.3)

Dec(m̃, k) = m̃⊕ k (8.4)

∗By size we understand the total number of symbols in the space.
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where a⊕ b = a+m mod 2.

Proof. The proof of correctness is almost trivial, one just has to note that for any bit m, k ∈ {0, 1}
it holds that (m⊕ k)⊕ k = m⊕ (k ⊕ k) = m⊕ 0 = m.

For the proof of security, note that for a uniformly random key k where each bit can have the
value zero or one with equal probability it holds that p(m̃ | m) = p(m⊗ k | m) = 2−n. Moreover,
since m̃ is also uniformly distributed, i.e. p(m) =

∑
m p(m)p(m̃ | m) = 2−n, the probability of

recovering m knowing m̃ is

p(m | m̃) =
p(m, m̃)

p(m̃)
=
p(m̃ | m)p(m)

p(m̃)
= p(m)

satisfying the condition on eq. (8.1).

8.2 The quantum approach, how to make Eve ignorant?

8.3 Classical cryptography: RSA algorithm

All current cryptography algorithms are based on the difficulty to factorise a product of two
prime numbers. RSA is one of the most used protocols and work as follows:

1. Choose two prime numbers p and q and evaluate their product n = pq. The prime numbers
p and q are kept private but n is published.

2. Evaluate the value of Euler’s φ function φ(n) = (p− 1)(q − 1) and choose a number 1 < e <
φ(n) such that e is coprime with φ(n) (their maximum common divisor is 1).

3. Find d such that de = 1 mod φ(n), that is the inverse of e modulo φ(n).

4. Alice publishes the numbers (n, e) and Bob then encodes his message m by performing the
operation c = me mod n.

5. Alice receives the encoded message c and recovers it using m = cd mod n.

Of course, this whole process will be no-sense if anyone could factorise n, find p and q since d
is trivially found, so the message would be exposed.

8.4 BB84

It is important to remember that this protocol is not intended to transmit a message but to
transmit a private key which can be used later to encode the real message as explained above. The
steps to obtain the key go as follow:

1. Alice generates a sequence of 4n random bits a = (a1a2 . . . an) and she encodes each bit
in a quantum state by choosing randomly one of the two basis Z = {0 : |↑〉 , 1 : |↓〉} or
V = (X ± Z)/

√
2 = {0 : |↗〉 , 1 : |↖〉}.

2. Bob receives this sequence of states and he measures them by measuring each of them in the
basis Z or V , chosen randomly. The result is a sequence of bits b = (b1b2 . . . bn).

3. Alice and Bob publish the basis they’ve used to encode and to measure, respectively. They
will compare them and discard the bits where Bob measured in a different basis in which
Alice prepared it.

The resulting sequence should have about 2n bits, if not they start over again.

4. Alice picks a subset of n bits and compares them with the same Bob’s subset. She then
evaluates the Quantum Bit Error Rate (percentage of error), if it is large than 8′11% we say
that there has been an eavesdropper and we start over again.

5. At this point, the key has n bits and can be considered safe but there are some extra steps
that increase the privacy.
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• Information reconciliation: Alice and Bob choose some even number of bits and evaluate
their sum, ck + cj , if they get the same result then they discard ck and save bj again.

• Privacy amplification: Alice and Bob replace some bits ck by the sum with its adjacent
ck+1.

At the end of the whole process, we will end up with a short key as most bits are removed for
safety.

8.5 Ekert91

1. Alice and Bob share a set of n entangled states |Φ+〉 generated in a safe source.

2. Alice measures her part of the state in one of the basis ZAθ1 , Z
A
θ2
, ZAθ3 and similarly for Bob

ZBϕ1
, ZBϕ2

, ZBϕ3
.

3. They share the bases that they used and put the bits where they agree first.

4. Then they publish the set of bits where they didn’t concide and evaluate the correlation
function

S = E(ZAθ1 , Z
B
ϕ3

) + E(ZAθ1 , Z
B
ϕ2

) + E(ZAθ2 , Z
B
ϕ3

)− E(ZAθ2 , Z
B
θ2) (8.5)

Quantum mechanics tells us that S = 2
√

2 (see section 3.5) while classically S =
√

2. In case
there was an eavesdropper, the correlation function will have a value S < 2

√
2.

5. If S is close to 2
√

2 thye can take the key, if not they must start over again.
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9 Quantum Error Correction

In practice, it is very difficult to keep a qubit stable in its state since environment interacts with
it and usually it is entangled to it. The environment introduces noise to the system, for instance
it can take the state |0〉 to a superposition

√
1− p |0〉+√p |1〉. If the noise is small, p� 1, we will

recover the original state with probability 1−p ≈ 1, but for not so small values of p the uncertainty
increases.

This is the reason why we introduce quantum error correction protocols. As a simple example,
consider the channel explain previously named bit flip channel, pictured in fig. 12. This channel
flips the original bit, |i〉 → |1⊕ i〉, with probability p. A way to reduce the probability of error, we
will send 3 identical qubits instead of one, |i〉 → |i〉L = |iii〉. The channel may or may not flip any
of the individual states, in any case, whenever we want to recover the state we will measure the
3 states and decide which was our state using the majority voting protocol, i.e. choose the value
that has more bits. Thus, the error probability is the probability that two or three qubits were
flipped so pe = 3p2(1− p) + p3 = 3p2 − 2p3.

1− p

p

1− p

|0〉 |0〉

|1〉 |1〉

Figure 12: Bit flip channel with flipping probability p.

The previous example is just the same as in classical mechanics, we shall study in the following
sections a specific example which only happens in quantum mechanics but the key idea is the
same: send multiple copies of the same qubits. So, instead of sending the state α |0〉+β |1〉 we will
send α |0〉L + β |1〉L where {|0〉L , |1〉L} are called logical qubits. The specific form of the logical
qubits depend on the algorithm and the error we want to correct, sometimes they are also called
error-correcting qubits. In the following section we will see examples of error-correcting codes and
the general approach to quantum error correction.

9.1 Indirect measurement

In the following sections we will need the concept of indirect measurement. We already know
that a standard measurement A on the state |ψ〉 will collapse the state to any of the orthogonal
subspaces of A, thus destroying the original state. The indirect measurement is built in order
to extract information from a state without destroying it. This process has to be done with the
introduction of an ancillary qubit.

For instance, in fig. 13 we see the process that makes an indirect measure on the qubit |ψ〉 =
α |0〉+ β |1〉 of the projector P with eigenvalues ±1.

|ψ〉 P U |ψ〉

|0〉 H • H •

Figure 13: Circuit that implements an indirect measurement of the projector P .

The state of the circuit initially is |ψ0〉 = |ψ〉 |0〉 and after the first Hadamard it turns to
|ψ1〉 = |ψ〉 |+〉. Then, the control operation produces the entangled state

|ψ3〉 =
1√
2

(|ψ〉 |0〉+ (P |ψ〉) |1〉) (9.1)
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It follows that the state prior to the measurement is

|ψ4〉 =

(
I + P

2

)
|ψ〉 |0〉+

(
I− P

2

)
|ψ〉 |1〉 (9.2)

The form of this state induces us to think that the circuit projects the state into the positive
and negative eigenspace of P , depending on the result of the measure. This is very useful since, if
we choose a |ψ〉 such that P |ψ〉 = + |ψ〉, the result of the measure will always be 0 unless there
has been an error in the circuit. In this situation, we use this information to perform a controlled
unitary operation U on the state to recover our original qubit.

The process is clearly seen with an example. Consider |ψ〉 = |+〉 and P = X. Then, |ψ4〉 =
|+〉 |0〉 and the measure will always trigger +1 so no change needs to be made on the state. However,
if an error occurred, suppose a Z gate was applied before the application of P then the state will
turn to |−〉 and |ψ4〉 = |−〉 |1〉. The state has collapsed to the negative eigenspace so the measure
will output −1. We have been able to detect the error and now we are able to correct it by applying
an U = Z gate to the first register recovering the initial state.

We’ve seen an example of indirect measurement that induces a simple quantum error correction.
This will be useful when we analyse more complicated codes in what follows.

Finally, let us introduce some nomenclature. This process of indirect measurement + quantum
error correction using an ancilla qubit is usually called parity check as we use the parity of |ψ〉
under P to detect an error. The gate P is called an stabiliser of |ψ〉 if P |ψ〉 = + |ψ〉.

9.2 Bit flip code

Let’s make a more systematic analysis of the previous algorithm. We start with our agent
Alice sending a state |ψ〉 using three qubits. Suppose that |ψ〉 = α |0〉+ β |1〉 we will have |ψ〉L =
α |0〉L + β |1〉L. She sends this state through the channel in fig. 12 which potentially flips 1,2,3
or non or the qubits. The error, in practical terms, is introduced when an X gate is applied to
any of the three qubits composing our logical qubit. Bob, after receiving this state, performs a
measurement to detect if there has been any bit flip and then corrects its state in order to recover
the original |ψ〉.

It is important to note that this system is only capable of recovering the original state if there
has been only a flip. Notice that three individual bit flips are required to take |0〉L → |1〉L, hence if
we assume |ψ〉L = |0〉L, a single bit flip on any qubit leaves the final state closer to |0〉L than |1〉L.
The distance between two codeword states, d, defines the number of errors that can be corrected,
t, as t = b(d− 1)/2c Devitt et al. [2013]. In this case, d = 3, hence t = 1.

There are two ways to proceed now:

A) Apply a POVM {Pij}3i=0 on the state received to detect the position of the flip, assigning the
hypothesis that there was a change in the j-th position if the result j is obtain, except for j = 0
which we identify with the no flip. The form of these operators is

Π0 = |000〉〈000|+ |111〉〈111| (9.3a)

Π1 = |100〉〈100|+ |011〉〈011| (9.3b)

Π2 = |010〉〈010|+ |101〉〈101| (9.3c)

Π3 = |001〉〈001|+ |110〉〈110| (9.3d)

We can check that {Πj} form a compete set of orthogonal projectors, moreover, the state post
measurement isn’t changed at all for any ψ. This allows us to detect the position of the change
with 100% certainty and to correct it applying a X gate on the position of the change (or the
identity if no flip occurred).

B) The other method is to include an auxiliary system composed of two qubits attached to the
state |ψ〉 (after the possible change) and apply a sequence of CNOT gates to change the state
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of the ancilla (see fig. 14) to one of the following

|ψ0〉 = (α |000〉+ β |111〉) |00〉 (9.4a)

|ψ1〉 = (α |100〉+ β |011〉) |01〉 (9.4b)

|ψ2〉 = (α |010〉+ β |101〉) |10〉 (9.4c)

|ψ3〉 = (α |001〉+ β |110〉) |11〉 (9.4d)

The four states are orthogonal to each other so we can perform a measure on the Z basis of the
last two qubits. This is tel us with certainty the position of the flip and with this information
we will be able to recover the state as before, by applying a X gate on that position (or do
nothing if no flip occurred).

Figure 14: Circuit to encode and correct a single bit flip using an auxiliary system.

C) There is even a third strategy, which is to perform a joint measure of the first and second qubit
and of the second and third, that is, Z1Z2 ≡ Z ⊗ Z ⊗ I and Z2Z3 ≡ I ⊗ Z ⊗ Z. There result
of each separately can be either ±1 so in total we have 4 possibilities as desired to distinguish
perfectly the 4 cases above.

In the nomenclature introduced before {Z1Z2, Z2, Z3, Z1Z3} are stabilisers of the 3-bit flip
code, all of them leave the state |ψ〉L invariant. Moreover, since they are projectors with
eigenvalues ±1 we can use them as an indirect measure as a way to detect a possible bit flip
in any position. Note that, we don’t need to measure the three observables, but with only two
we cover all the possible outcomes.

The analysis is made simpler by writing the operators explicitly:

Z1Z2 = (|00〉〈00|+ |11〉〈11|)⊗ I− (|01〉〈01|+ |10〉〈10|)⊗ I (9.5a)

Z2Z3 = I⊗ (|00〉〈00|+ |11〉〈11|)− I⊗ (|10〉〈10|+ |01〉〈01|) (9.5b)

Essentially, ZiZj will output +1 if the states i and j are the same, and −1 if the states are
different. Therefore, by knowing these output we can identify the syndrome and correct it (see
table below).

Table 1: Syndrome detection and correction procedure for a bit flip error-correcting code.

Z1Z2 Z2Z3 Syndrome Correction

+1 +1 No error I

+1 −1 Error 3rd qb I⊗ I⊗X
−1 +1 Error 1st qb X ⊗ I⊗ I

−1 −1 Error 2nd qb I⊗X ⊗ I

Essentially, this three methods are equivalent, only that sometimes it is easier to implement the
later as it is made of known and standard gates. The former doesn’t need to add extra states to
the analysis but we would have to find a way to implement those projectors which is a non-trivial
task.
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What is crucial to the success of these measurements is that neither measurement gives any
information about the amplitudes of α and β of the encoded quantum states, and thus neither
measurement destroys the superposition of quantum states that we with to preserve using the
code.

This error-correction procedure works perfectly, provided bit flips occur on one or fewer qubits
which happens with probability (1−p)3 + 3p(1−p)2 = 1− (3p2−2p3). The probability of an error
remaining uncorrected is therefore 3p2 − 2p3, just as the classical majority voting protocol before.

9.3 Phase flip code

This channel introduces a phase to the state |0〉 and |1〉 with probability p according to the
eigenvalue of Z, i.e. |i〉 → Z |i〉. Obviously, if the state send is one of the eigenvectors of Z nothing
will happen but as soon as we send a superposed state we have that α |0〉 + β |1〉 → α |0〉 − β |1〉
up to the extreme case that |+〉 → |−〉, and vice-versa.

This gives us an intuition of this problem that can help us solve it without any trouble as
the phase flip error in the Z basis can be interpreted as a bit flip error in the X basis. This
suggest using the states |0〉L = |+ + +〉 and |1〉L = |− − −〉 as logical states. Then, we replace the
measurement projectors by Π′j = H⊗3ΠjH

⊗3 and run the protocol as before.
Similarly, we can apply this transformation to the 3rd case, so instead of having measurements

in the Z basis we will measure in the X basis and proceed as in table 1 (whenver you see a Z
replace it with a X, and vice-versa).

We can say that the bit flip and the phase shift are unitary equivalent, since there is a unitary
operator U such that the action of one channel is the same as the other, provided the first channel
is preceded by a U and followed by a U†.

9.4 9 qubit Shor code

Shor [1995] came up with the idea to use a coding scheme of 9 qubits in order to correct any
arbitrary error on a single qubit. It makes use of the three qubits bit flip and phase flip codes,
which are able to correct an X or Z transformation on a single qubit∗.

The qubits are first encoded using the phase flip code: |0〉 → |+ + +〉 and |1〉 → |− −−〉; and
then, each of the separate qubits is replicated into three copies as in the bit flip code. The logical
qubits are

|0〉L ≡
1

2
√

2
(|000〉+ |111〉) (|000〉+ |111〉) (|000〉+ |111〉) (9.6a)

|1〉L ≡
1

2
√

2
(|000〉 − |111〉) (|000〉 − |111〉) (|000〉 − |111〉) (9.6b)

each composed of 9 qubits.
The detection of a bit flip in any qubit is made using any of the three methods explained above.

Here, we will stick to the third case at it doesn’t require the introduction of auxiliary qubits or any
POVM. We measure them in pairs of consecutive qubits via ZjZj+1 from j = 1, . . . , 8 obtaining
28 possible results. For example, if a bit flip occurred in the 5th qubit we will obtain a −1 for the
measurement operator Z4Z5 and −1 for Z5Z6 leading to the conclusion that there was a bit flip
error in the 5th qubit (2nd qubit of the 2nd group).

Instead, if there was a phase flip error. a change of sing would have happened in any of the three
groups. The detection is made by measuring in the observables {X1X2X3X4X5X6, X4X5X6X7X8X9}.
Again, each observable separately will output +1 if the sign is the same in the two groups and −1
if the sign is different. The exact position of the phase flip can be extracted (just as in table 1)
and corrected by applying Z3i−2Z3i−1Z3i on the group i ∈ {1, 2, 3} that suffered the change.

Because both measurements are non-destructive, we can concatenate both and correct any
bit flip error on a qubit and any phase flip error. thus, the Shor code enables the correction of
combined bit and phase flip errors on a singe qubit.

∗Remember that, since the Pauli matrices do not commute, we can produce a Y rotation with a combination of
X and Z rotations. Therefore, a code that can correct both X and Z rotations also corrects Y rotations.
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In fact, this code is more powerful than that as it can correct any arbitrary small rotation in
the Bloch sphere with just two discrete correction codes for specific errors [see Nielsen and Chuang,
2010, Section 10.2].

9.5 General quantum error correction protocol

A quantum error correction protocol generally consist on 3 stages:

1. A quantum state is encoded into a quantum error-correcting code, formally it is encoded into
some subspace C of a larger Hilbert space. We introduce the projector P which maps any
state to this subspace.

For instance, in the bit flip case, the subspace C was composed of two states {|000〉 , |111〉}
that are used to encode all the qubits. The projector onto this subspace is just P =
|000〉〈000|+ |111〉〈111|.

2. The noise acted on the system and we to perform a measurement to diagnose the type of error,
that is, the error syndrome. It is important that the measurement distinguishes without error
all the types of syndromes, the projectors forming the POVM are orthogonal, otherwise the
next recovery step won’t work.

3. Finally, based on the outcome of the measure, a recovery operation is performed on the state
to return it to the original one.

With this said, we suppose that the noise is described by a quantum operation E and the
complete error-correction procedure is effected by a trace-preserving quantum operation R. Then,
if the quantum error correction is successful we should have that, for all ρ, to following condition
is satisfied

(R ◦ E)(ρ) ∝ ρ (9.7)

where the reason for the ∝ is that we don’t require E to be trace-preserving, thus allowing to a
more general set of operations like measurement. We are ready to announce the following theorem
that gives us a way to construct R from E .

Theorem 11. Let C be a quantum code and let P be a projector onto C. Suppose E is a quantum
operation with elements {Ei}. a necessary and sufficient condition for the existence of an error-
correction operation R correction E on C is that

PE†iEjP = αijP (9.8)

for some hermitian matrix α.

If such an R exist, we say that {Ei} constitutes a correctable set of errors. For instance, take
Shor’s code for 9 qubits that is said to correct any type of single qubit error. The most general
form of such quantum operation E can be written with operation elements {Ei} that are a linear
combination of the Pauli matrics and the identity,

Ei = ei0I + ei1σ1 + ei2σ1σ3 + ei3σ3

where we have used that σ1σ3 ∝ σ2. Therefore, to check that the Shor code corrects against
arbitrary single qubit errors on the k-th qubit it is sufficient to verify that the equations

Pσki σ
k
j P = αijP i = 0, 1, 2, 3 (9.9)

are satisfied. The projector P for the Shor code is given by P = |0L〉〈0L|+ |1L〉〈1L| with |0〉L and
|1〉L as in eq. (9.6).
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9.6 Fault-tolerant quantum computation

In our discussion so far, we have assumed that we can encode quantum information and perform
recovery from errors without making any mistakes. But,of course, error recovery will not be flawless.
Recovery is itself a quantum computation that will be prone to error. If the probability of error
for each bit in our code block is ε, then it is reasonable to suppose that each quantum gate that we
employ in the recovery procedure has a probability of order ε of introducing an error. If our recovery
procedure is carelessly designed, then the probability that the procedure fails (e.g., because two
errors occur in the same block) may be of order ε. Then we have derived no benefit from using
a quantum error-correcting code; in fact, the probability of error per data qubit is even higher
than without any coding. So we are obligated to consider systematically all the possible ways that
recovery might fail with a probability of order ε, and to ensure that they are all eliminated. Only
then is our procedure fault tolerant, and only then is coding guaranteed to pay off once ε is small
enough [Preskill, 1998].

The basic idea of fault-tolerant quantum computation is to compute directly on encoded quan-
tum states in such a manner that decoding is never required. We replace each qubit with an
encoded block of qubits and each gate with a procedure for performing an encoded gate acting
on the encoded state. The problem comes when one of this gates fails and the error propagates
through the code. We define the fault-tolerance of a procedure to be the property that if only one
component in the procedure fails then the failure causes at most one error in each encoded block
of qubits output from the procedure. By component we understand gates, measurement, wires,
state preparation...

We say that a gate U is transversal on a code C if its action before encoding the state leaves the
same result as applying individual qubit gates after encoding. In fig. 15 we see a general scheme
of a gate acting on a codified state. If the logical gate UL = U⊗n, where n is the number of qubits
forming the code, then the gate is transversal, otherwise UL can have a totally different form. In
any case, this logical gate has to verify the equality UL |ψ〉L = C(U |ψ〉) giventhe original state |ψ〉
and the original gate U .

|ψ〉 |ψ〉L

U |ψ〉 UL|ψ〉L = C(U |ψ〉)

C

UL

C

U

Figure 15: Application of a fault tolerant gate.

For example, the Z and X gates are transversal under the 3-qubit code but H is not. The
importance of tranversal gates is that they do not propagate the error to other qubits, however
not all universal gates are transversal. This is in contrast to non-transversal operators, where, for
example,an encoded gate coupling every subsystem in a code block might convert an error on a
single subsystem into an error on every subsystem of the code block.

It would be nice if there exist a universal set of gate that are transversal under a certain
error-correcting code C allowing fault-tolerant quantum computation but the following theorem
by Eastin and Knill [2009] forbids this.

Theorem 12. For any nontrivial local-error-detecting quantum code, the set of transversal, logical
unitary operators is not universal.

9.7 Threshold theorem and concatenated codes

The idea behind a concatenated code is to reduce the effective error by recursively applying
error correcting codes. In the first stage, each qubit is encoded in a quantum code C0 whose
qubits are themselves encoded in a quantum code C1, those into C2 and so forth. Shor’s code is
an example of concatenated code in two stages.
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Suppose that our code C takes one qubit to c qubits, if the failure probability of each component
is p then the probability of failure after the first encoding is cp · p = cp2. After, two encoding

procedures, the error becomes c(cp2)2 and so after k concatenations the error is (cp)2k

/c.
If our systems grows polynomially with the input size n, that is p(n), and we wish to achieve

an accuracy ε in the final result, each gate in our algorithm must have an accuracy ε/p(n) so

(cp)2k

c
≤ ε

p(n)
(9.10)

Only when, p < pth = 1/c this k can be found. The condition p < pth is known as the threshold
condition since provided it is satisfied we can achieve arbitrary accuracy in our quantum compu-
tation.

The number of gates needed to simulate a circuit with p(n) gates up to an accuracy ε is

O (poly (log p(n)/ε) p(n)) (9.11)

provided that p < pth.

9.8 Entanglement distillation

Teleportation and dense coding, two of the most important protocols in quantum communi-
cation, rely on having a maximally entangled state shared between two parties Alice and Bob.
However, thos protocols as explained in this text, assume that the Alice sends one part of her
bipartite state to Bob without error. Sadly, this is an ideal process, but in real life we are faced
with errors on the communication line.

Entanglement distillation is a process by which two separate observes, by applying local oper-
ations to a supply of not-too-impure entangled states can prepare a smaller number of entangled
pairs of arbitrarily high purity [Bennett et al., 1996]. Alice will prepare n copies of a bipartite state
ρ and sends the second parts to Bob. In any case, a single copy of those states can be expressed
as a Werner state

ρ = WF = F |Φ+〉〈Φ+|+
1− F

3
(|Ψ+〉〈Ψ+|+ |Ψ−〉〈Ψ−|+ |Φ−〉〈Φ−|) (9.12)

since the Bell states form a basis of H⊗2
2 , where F is the fidelity with respect to the state |Φ+〉,

the state we need to have in order to apply successful communication.
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