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Notation

Natural units c = ~ = 1

Minkowski Metric ηµν = diag(+1,−1,−1,−1)

4-vector xµ = (x0,x)

4-covector xµ = ηµνx
ν = (x0,−x)

4-derivative ∂µφ = (∂tφ,∇φ)

D’Alembertian � = ∂2 = ∂µ∂µ = ∂2t −∇2

Relativistic energy Ep =

√
|p|2 +m2

Barn 1 barn = 1× 10−24 cm2

Normal order N [φ1φ2]

Time order T {φ1φ2}
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Why a Quantum Field Theory?
Of course, the inadequacies of classical physics have been known for more than a hundred years

by now. The classical theories we observe in nature actually arise as “approximations” or “limits”
of quantum theories. I can’t give a general definition of a quantum field theory (no-one can, at least
not a satisfactory definition), but I can describe some properties these theories must have [Ell13].

1. An important characteristic of quantum theory is the nature of measurement: what kind of
thing is a quantum observation? Here’s a sign that something genuinely different is going
on to the classical theory: the observations we can make with “true” or “false” as possible
answers fail to form a Boolean algebra. The famous counterexample is Young’s two slit
experiment. Suppose one has a screen with two slits at points A and B, and a detector at a
point C beyond it, and one fires a single photon at the screen. Then one can do two different
experiments, measuring two different possible observables. One finds different results by
performing the following two measurements:

(A OR B) AND C = (A AND C) OR (B AND C)

where by A, B, C I mean the observables “was a particle detected at this point?” There
are two things to observe here. The first is the failure of the distributivity law (as satisfied
by measurements in classical mechanics), the second is the non-determinism of the situation:
one generally doesn’t get the same result when one repeats the same experiment. Quantum
measurements are inherently probabilistic. As a result, while we cannot meaningfully talk
about the value of an observable when the system is in some state, it does make sense to talk
about the expected value of an observable.

2. Another famous characteristic that our model for quantum observables must possess is failure
of simultaneous measurability. This is typified by Heisenberg’s uncertainty principle: two
observable quantities for a quantum particle are its position and its momentum. Suppose
one tried to build an algebra of observables, where the product was “do both observables
simultaneously”. Measuring position and momentum simultaneously should certainly arise
as a limit of “measure position, then measure momentum time later” as ε→ 0, or likewise of
“measure momentum, then measure position time ε later”. The uncertainty principle tells us
that in fact these limits necessarily differ. While one can produce an algebra of observables,
it is necessarily non-commutative in all non-trivial examples.

3. I should say something about the quantum notion of “states”, and the wave-particle duality
in quantum mechanics. One wants to represent our algebra of observables as acting on
something. The principle of superposition says that any complex linear combination of two
quantum states is also a state (as in the thought experiment of Schrödinger’s cat, but in
fact this is an experimentally verifiable phenomenon), so our space of states forms a complex
vector space. One generally thinks of the space of states as a separable Hilbert space, with
the observables acting by self-adjoint operators.
For example, in the case of a quantum particle moving in Rn, we have the position and
momentum operators, which satisfy well-known commutation relations. The Stone-von Neu-
mann theorem tells us that the representation of these operators is essentially unique, and
can be described as multiplication and differentiation operators acting on the Hilbert space
L2(Rn)

4. I’ve mostly spoken just about quantum mechanics. In quantum field theory we really need to
remember a piece of data we’ve been so far essentially forgetting: the underlying spacetime
manifold. When we consider observables in this context we can remember the data of the
support of a classical observable: does it only depend on a field in a certain neighbourhood?
Quantisation should reflect this locality in a suitable way (I won’t discuss this further, because
it’s somewhat orthogonal to the rest of the talk, but models for quantum field theory, both
descriptions like TQFTs and descriptions like factorisation algebras have this locality built
in as a hypothesis).
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5. Finally, our system must behave well in the classical limit. That is, if we take a limit at low
energies, or at long distances, we should recover the appropriate classical field theory. What
does this mean in terms of observables? Well, broadly speaking, to any quantum observable
there should correspond an underlying classical observable – a function on the classical state
space – and the commutator of quantum observables should agree with the Poisson bracket
of the classical observables up to a factor of i~.
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1 CLASSICAL FIELD THEORY ALM

1 Classical Field Theory
The dynamics of a system is encoded in a Lagrangian over the continuous fields φi = φi(x

µ)
by the Lagrangian density function

L = L(φi; ∂µφi) (1.1)
The Lagrangian L is obtained from the Lagrangian density L by integrating over the space variables

L =

∫
d3x L(φi; ∂µφi) (1.2)

Properties
1. Local: each product is evaluated at the same space-time point, a term like φi(x)φj(x′) is not

valid.

2. Lorentz invariant: the whole Lagrangian has to be Lorentz invariant, i.e., it should not
depend on the reference frame.

3. Real: L ∈ R (although it might not be explicit).
Define the action S(Ω) as the integral over an arbitrary region of the 4-d space time continuum

of the Lagrangian density
S(Ω) =

∫
Ω

d4x L(φi; ∂µφi) (1.3)

Just like in classical mechanics, the equations of motion are obtained from the variational princi-
ple.We consider variations of the fields φi(x) → φi(x) + δφi(x), with such variations that vanish
at the surface of Ω. Then, at first order, the equations of motion are obtained imposing that the
action is stationary, δS = 0, which gives

∂L
∂φi
− ∂

∂xµ

(
∂L

∂[∂µφi]

)
= 0 (1.4)

for each field φi with i = 1, . . . , N .
Define the canonical conjugate momenta

πi =
∂L
∂φ̇i

(1.5)

and with this the Hamiltonian density

H(φi;πi;∇φi) =
∑
i

πiφ̇i − L(φi; ∂µφi) (1.6)

Similarly, the total Hamiltonian is the integral over the space part of the Hamiltonian density

H =

∫
d3x H(φi;πi;∇φi) (1.7)

1.1 Quantization
In order to go from the classical to the quantum field theory, we need to impose some commu-

tation relations to quantize the fields through the Poisson brackets. Let F [φ, π] and G[φ, π] be two
functionals of φ and π, the equal time Poisson brackets are

[F,G]PB = d3 x

(
∂F

∂φ(x )

∂G

∂π(x )
− ∂F

∂φ(x )

∂G

∂π(x )

)
(1.8)

which is related to the usual commutator in Quantum Physics by

[−,−]Q −→ i~[−,−]PB (1.9)

We can interpret the fields and conjugate momenta as Heisenberg operators (evolving with
time) and obtain the canonical commutation relations

[φi(t,x), πj(t,y)] = i~δijδ3(x− y)

[φi(t,x), φj(t,y)] = [πi(t,x), πj(t,y)] = 0
(1.10)

1



1 CLASSICAL FIELD THEORY ALM

1.2 Symmetries and conservation laws
Following from Noether’s theorem (see Appendix B), with each symmetry the exist a conser-

vation law δL = 0 and a current that is conserved of the form

∂µj
µ = 0 (1.11)

which implies the existence of a conserved charge Q =
∫
V
d3x j0

dQ

dt
= −

∫
∂V

j · dσ −→ 0 (1.12)

Where we assume that the current tends to zero much faster than the increase of S at infinity.
In general, this happens when the change in the Lagrangian is a total derivative, i.e. L′ =

L+ ∂αΛ
α.

Internal symmetries Those are related to an infinitesimal change in the field of the type∗

φi(x) −→ φ′i(x) = φi(x) + δφi(x) (1.13)

The change in the Lagrangian is

δL = ∂µ

(
∂L

∂[∂µφi]
δφi

)
= ∂µ(π

µ
i δφi) (1.14)

and the conserved current, imposing δL = 0, according to eq. (1.11) is

jµi = πµ
i δφi (1.15)

Space-time symmetries A consequence of a change in the coordinates like

φi(x
µ) −→ φi(x

µ + εµ) = φi(x
µ) + εµ∂µφi(x

µ) (1.16)

Induces 4 conserved currents (for each field) expressed in terms of the energy-momentum tensor

Tµν
i =

∂L
∂[∂µφi]

∂νφi − ηµνL (1.17)

such that
∂µT

µν
i = 0 (1.18)

Correspondingly, there are 4 conserved charges given by

Pµ =

∫
d3x Tµ0 (1.19)

with P 0 = H.

∗This is true if the change is continuous, for example, a discrete change may be φ(x) → −φ(x) which does NOT
induce a conserved current.

2



2 COLLISIONS IN SPECIAL RELATIVITY ALM

2 Collisions in Special Relativity
Teorema 1. The 4-momentum of the whole system is always conserved in a relativistic collision.

The previous theorem condenses the conservation of energy and momentum in one simple
equation. If {pµi } i ∈ I is the collection of all 4-momentum of the initial states and {pµf} f ∈ F
the collection of states after the collision. Then, they must verify that∑

i∈I
pµi =

∑
f∈F

pµf (2.1)

Like in classical collisions, we can still distinguish between elastic and inelastic ones. The first,
implies that the particles in the initial state are equal to the final state I = F while in the later,
obviously, the particles in the initial and final state are different I 6= F .

We will restrict ourselves in this chapter to study in detail on type of collision involving 4
particles in total: 1 + 2 −→ 3 + 4. The conservation of 4-momentum eq. (2.1) implies∗

pµ1 + pµ2 = pµ3 + pµ4 (2.2)

Although the last equation is valid in all reference frames, it is usually studied in two frames of
references:

a) LAB: we take the second particle (particle B in our case) to be at rest, pLAB
B = 0 so E LAB

B =
mB , and the momentum of the other particles are written with respect to that.

b) CM: we situate ourselves in a frame where we see the two initial particles come to us with the
same 3-momentum (in modulus) and opposite direction, pCM

A = −pCM
B .

p1

p2

θ13

p4

p3

Figure 2.1: Collision between two particles, the shaded area corresponds to the interaction area.

2.1 Mandelstam variables
This are a set of 3 Lorentz invariant quantities (s, t, u) that encode the energy, momentum and

angles of the scattering processes like eq. (2.2). They are defined as

s = (p1 + p2)
2 = m2

1 +m2
2 + 2p1p2 (2.3a)

t = (p1 − p3)2 = m2
1 +m2

3 − 2p1p3 (2.3b)
u = (p1 − p4)2 = m2

1 +m2
4 − 2p1p4 (2.3c)

which verify
s+ t+ u = m2

1 +m2
2 +m2

3 +m2
4 (2.4)

These are important because they represent Lorentz invariant quantities, i.e. their value is the
same in all RF. Therefore, if we can express the energy and 3-momentum of the particles in terms
of Lorentz invariant quantities s, t, u,mi... we would have solved the problem in all RF as we can
always apply a Lorentz transformation to change between reference frames.

∗Usually the superscript with the indices µ is omitted and simply writen p1 + p2 = p3 + p4.

3



2 COLLISIONS IN SPECIAL RELATIVITY ALM

Teorema 2. To define completely the final state, for collisions involving N particles, they are
necessary {

3N − 10 N ≥ 4

0 N = 3

kinematic variables.

Proof. If we consider N particles, in general we would need 4N independent variables but there
are some constrains between them. First, we can subtract N because particles are on-shell (p2 =
E2 −m2), 4 more by conservation of 4-momentum eq. (2.2), 3 if we set one particle to be at rest
pi = 0, 2 by changing the axis so that one particle lays completely on the z-axis and finally, 1 more
by imposing that another particle is in the y plane so pj = (pj,x, 0, pj,z). If we do this calculation
we obtain 3N − 10. However, this equation doesn’t make sense for N = 3 as we cannot impose the
last condition, we only have 3× 3− 9 = 0.

Note that, for N = 4, from the previous formula we deduce that we only need 2 variables (t, u)
for the final state, so the initial state must be defined completely by s. It is instructive to work
out the relation between s and the energies and momentum of the initial state in the two RF that
we will use.

There is one last quantity that is usually calculated for the type of collisions show in fig. 2.1 as
it is easy to measure experimentally.We refer to the angle θ between particles 1 and 3, which can
be derived using the t Mandlestam variable

cos θ13 =
t−m2

1 −m2
3 + 2E1E3

2|p1||p3|
(2.5)

LAB frame Remember, in here the second particle is at rest pLAB
2 = 0⇒ E LAB

2 = m2 and the
first particle collides with it with momentum pLAB

1 = (E LAB
1 ,pLAB

1 ). The only constraint that
we have is imposed by Einstein’s relation and asserts that

p2 = E2 − |p|2 = m2 (2.6)

From the definition of s eq. (2.3a), with the values of pLAB
2 , we are left with s = m2

1 +m2
2 +

2E LAB
1 m2 from which we can isolate the energy of the first particle in terms of s and the masses

of the particles

E LAB
1 =

s−m2
1 −m2

2

2m2
(2.7)

and using Einstein’s relation eq. (2.6), we have the expression for the modulus of the momentum
of the first particle in the LAB frame in terms of the same variables∣∣pLAB

1

∣∣ =√(E LAB
1

)2 −m2
1 =

1

2m2
λ1/2(s,m2

1,m
2
2) (2.8)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz =
[
x2 − (

√
y +
√
z)2
] [
x2 − (

√
y −
√
z)2
]

(2.9)

Then, the total energy is of course

E LAB
T = E LAB

1 +m2 =
s−m2

1 +m2
2

2m2
(2.10)

CM frame The derivation in this case is not so easy. First of all, the momentum of the initial
particles move in the same direction but with opposite signs so pCM

1 = −pCM
2 ⇒

∣∣pCM
1

∣∣ =∣∣pCM
2

∣∣ = ∣∣pCM
∣∣. The expression of the Mandlestam variable s, using the previous relations, is

s = m2
1 +m2

2 + 2pCM
1 pCM

2 = m2
1 +m2

2 + 2
(
E CM

1 E CM
2 +

∣∣pCM
∣∣2) (2.11)

4



2 COLLISIONS IN SPECIAL RELATIVITY ALM

where
∣∣pCM

∣∣2 =
(
E CM

1

)2 −m2
1 =

(
E CM

2

)2 −m2
2. Equating both expressions, it follows that

s =
(
E CM

1 + E CM
2

)2
=⇒ E CM

T = E CM
1 + E CM

2 =
√
s (2.12)

Substituting in the previous expression we obtain

E CM
1 =

s+m2
1 −m2

2

2
√
s

, E CM
2 =

s−m2
1 +m2

2

2
√
s

(2.13)

Finally, the expression for the modulus of the momentum is obtained with Einstein’s relation
and can be written in terms of the λ function defined before in eq. (2.9) as∣∣pCM

∣∣ = ∣∣pCM
1

∣∣ = ∣∣pCM
2

∣∣ = 1√
s
λ1/2(s,m2

1,m
2
2) (2.14)

Using the later results, together with the expression for θ13 in eq. (2.5) we find the expression
for this angle in the CM frame

cos θCM
13 =

s(t− u) + (m2
1 −m2

2)(m
2
3 −m2

4)

λ1/2(s,m2
1,m

2
2)λ

1/2(s,m2
3,m

2
4)

(2.15)

There are special cases where the expression for this angle simplifies, for example:

• Elastic collision: m1 = m3 and m2 = m4

cos θCM
13 =

s2 + 2s(t−m2
1 −m2

2) + (m2
1 −m2

2)
2

λ(s,m2
1,m

2
2)

(2.16)

• Compton scattering: m1 = m3 = 0 and m2 = m4 = m 6= 0

cos θCM
13 =

s2 + 2s(t−m2
2) +m4

2

λ(s, 0,m2
2)

(2.17)

• Equal masses: m1 = m2 = m3 = m4 = m

cos θCM
13 =

s2 + 2s(t− 2m2)

λ(s,m2,m2)
= 1 +

2t

s(s2 − 4m2)
(2.18)

On the CM frame It is feasible to ask in which cases we can find a boost that transforms our
frame to the centre of mass frame. Consider a system of N particles in some Lorentz frame with
masses mi ≥ 0 and arbitrary pi. We want that pCM

T = 0.
Suppose p′

T is the total momentum in the original frame, we can always apply a rotation so
that it lays completely on the x axis: pT = Rp′

T = pxx̂. Then, the Lorentz transformation implies
that

pCM
x = γ(px − vxE) =⇒ vx =

px
E

but vx is restricted to be less than the velocity of light so

vx < 1 =⇒ px < E

Once, in the centre of mass frame, we can perform a rotation to return to the original axis as the
centre doesn’t suffer any change. Thus, can we conclude that it is always possible to go to the CM
frame? It will be the case if |p| < E, by definition

|p| =

∣∣∣∣∣∑
i

pi

∣∣∣∣∣ ≤∑
i

|pi| =
∑
i

√
m2

i + |pi|2 = E

The important part here is what happens when the inequality converts to an equality. This will
be the case of massless particles travelling with parallel momentum pi ‖ pj ∀i, j then |p| = E and
vx = 1 and it won’t be possible to go to the CM frame.

In any other case, if only one of the particles is massive, then it is possible to find a boost that
relates both systems.

5



2 COLLISIONS IN SPECIAL RELATIVITY ALM

Dalitz plot The definition of θ13 offers us a useful tool to impose some restrictions between the
s, t, u variables and the masses of the particles. For example, in the later case, where all the masses
are the same, s = 4E2 ≥ 4m2 ≥ 0 but we know that cos θCM

13 ∈ [−1, 1], therefore the second term
must be negative in eq. (2.18) so t ≤ 0. We can perform this analysis for the three variables and
for each one we obtain the constraints

s = 4E2 ≥ 4m2 (2.19a)

t = −2
∣∣pCM

∣∣2(1− cos θCM
13 ) ≤ 0 (2.19b)

u = −2
∣∣pCM

∣∣2(1 + cos θCM
13 ) ≤ 0 (2.19c)

which can be represented in a Dalitz plot, see Figure 2.2.
There exist a useful relation concerning the product of the 3 variables s, t, u that states

stu ≥ as+ bt+ cu (2.20)

where

a = (m1m2 −m3m4)(m1 +m2 −m3m4)/mT

b = (m1m3 −m2m4)(m1 +m3 −m2m4)/mT

c = (m1m4 −m2m3)(m1 +m4 −m2m3)/mT

and we have defined the total mass mT =
∑4

i=1mi.

Figure 2.2: The Dalitz plot showing the physical regions (shaded areas) for e−e+ → e−e+ and
the crossed reactions. For scattering between particles of unequal masses, the boundaries of the
physical regions are more complicated, but the general result of three non-overlapping regions holds
true (See [HM84], Figure 4.7).

Crossing symmetry This plot contains all the information about a scattering process, in con-
crete the case for e−e+ → e−e+, with the allowed values that the Mandlestam variables can take.
But not only this, it also contains information about the crossed processes, instead of AB → CD
we can also have AD → CB and DB → CA.

The crossing symmetry tells us that, in any interaction, the initial and final particles can
be interchanged just by turning them into its antiparticle but the functions describing the two
processes are the same.∗

∗See http://bolvan.ph.utexas.edu/~vadim/Classes/11f/crossing.pdf for a more detailed explanation.

6
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2 COLLISIONS IN SPECIAL RELATIVITY ALM

For example, consider the Compton scattering process e−γ → e−γ where Mcompton ∼ F (s, t, u)
is the probability amplitude for this process. Now consider the complimentary process where we
exchange the final electron with the initial photon, the reaction is e−e+ → γγ by virtue of the
crossing symmetry. The amplitude of this process is Manhiltation ∼ F (t, s, u), the function has not
change, only the position of the variables.

Let’s see this, in the first interaction we can label the four 4-momentums associated to it as:
p1 = pi(e

−), p2 = pi(γ), p3 = pf (e
−) and p4 = pf (γ); Thus, the conservation of momentum reads

pi(e
−) + pi(γ) = pf (e

−) + pf (γ) (2.21)

which can be expressed as
pi(e

−)− pf (e−) = pf (γ)− pi(γ) (2.22)

However, for the second process we can label the states as p1 = pi(e
−), p2 = pi(e

+), p3 = pf (γ)
and p4 = pf (γ); so the conservation of 4-momentum implies

pi(e
−) + pi(e

+) = pf (γ) + pf (γ) (2.23)

In comparison with the previous expression, we identify pi(e
+) ↔ −pf (e−) and pf (γ) ↔ −pi(γ).

Notice that, the momentum of the antiparticle is related to the momentum of the particle by a
change of sign,

p(π) = −p(π) (2.24)

This conclusion follows directly from the QFT derived in the next sections.

2.2 Decays
A decay of a particle A is a process in which this particle, by itself, is annihilated and turned

into some other particles B,C, . . . . We will study the process in which

A −→ BCD (2.25)

We do so because of the crossing symmetry derived before, in this manner, this process is physically
identical to eq. (2.2), we just have to rename the variables.

It is easy to study a decay from the CM frame, considering the mother particle A at rest,
P = (M,0) so the conservation laws read

0 = p1 + p2 + p3 (2.26a)
M = E1 + E2 + E3 (2.26b)

We can use the definition of the Mandlestam variables eq. (2.3) to find an expression for the
energies in terms of Lorentz invariant quantities. The only trick here is in the definition of s,
previously we had s = (P + p1)

2 but we exchanged p1 for its antiparticle so by eq. (2.24) we
conclude that s = (P − p1)2. Then, the expressions for the energies is

E1 =
1

2M
(M2 +m2

1 −m2
23) (2.27a)

E2 =
1

2M
(M2 +m2

2 −m2
13) (2.27b)

E3 =
1

2M
(M2 +m2

3 −m2
12) (2.27c)

where we have defined the invariant quantities

m2
ij = (pi + pj)

2 (2.28)

The magnitude of the final momenta for each particle is

|pi| =
1

2M
λ1/2(m2

jk,M
2,m2

i ) (2.29)

where the indices j, k are those different from i.
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3 THE KLEIN-GORDON FIELD ALM

3 The Klein-Gordon field
From the relativistic equation of the energy

E2
p = m2 + p2 (3.1)

the idea is to interpret E and p as operators in quantum physics. Then, replacing p→ −i∇ and
E → i∂t leads to

(∂2 +m2)φ(x) = 0 (3.2)

This is the Klein-Gordon equation, only valid for particles with spin 0.
The Klein-Gordon equation (eq. (3.2)) can be derived from the Lagrangian density

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2 (3.3)

and the conjugate momenta is π = φ̇. Thus, the Hamiltonian for the KG field is

H =
1

2

∫
d3x

[
π2 + (∇φ)2 +m2φ2

]
(3.4)

and the 3-momentum
P = −

∫
d3x φ̇∇φ (3.5)

The solutions to eq. (3.2) have the form of plane waves

φ±(x) ∝ e∓pµx
µ

(3.6)

with the condition p2 = m2 that follows from the KG equation.

3.1 Quantization
The next step is to quantize the field by imposing the canonical commutation relations eq. (1.10)

[φ(t,x), π(t,y)] = i~δ3(x− y)

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0
(3.7)

A general solution will be a combination of this plane waves, for all allowed values of kµ.
Suppose, for now, that the field is real (φ = φ†), then it can be written as

φ(x) =

∫
d3p√

(2π)32Ep

[
a(p)e−ipx + a†(p)eipx

]
= φ+(x) + φ−(x) (3.8)

where

φ+(x) =

∫
d3p√

(2π)32Ep

a(p)e−ipx (3.9a)

φ−(x) =

∫
d3p√

(2π)32Ep

a†(p)e+ipx (3.9b)

Equation eq. (3.8) makes explicit the dual particle and wave interpretations of the quantum field
φ(x). On the one hand, φ(x) is written as a Hilbert space operator, which creates and destroys
the particles that are the quanta of field excitation. On the other hand, φ(x) is written as a linear
combination of solutions ( eipx and e−ipx ) of the Klein-Gordon equation. Both signs of the time
dependence in the exponential appear, although p0 = Ep is always positive. If these were single-
particle wavefunctions, they would correspond to states of positive and negative energy; let us
refer to them more generally as positive- and negative-frequency modes. The connection between
the particle creation operators and the waveforms displayed here is always valid for free quantum
fields: a positive-frequency solution of the field equation has as its coefficient the operator that

8



3 THE KLEIN-GORDON FIELD ALM

destroys a particle in that single-particle wavefunction. A negative-frequency solution of the field
equation, being the hermitian conjugate of a positive-frequency solution, has as its coefficient the
operator that creates a particle in that positive-energy single-particle wavefunction. In this way,
the fact that relativistic wave equations have both positive- and negative-frequency solutions is
reconciled with the requirement that a sensible quantum theory contain only positive excitation
energies [PS95].

In fact, eq. (3.8) can be seen as the Fourier transform of the field, from the space-time coor-
dinates to the momentum space. So, we can also write the canonical commutation relations in
Fourier space, inserting eq. (3.8) into eq. (3.7) we obtain

[a(p), a†(p′)] = δ3(p− p′)

[a(p), a(p′)] = [a†(p), a†(p′)] = 0
(3.10)

Completely equivalent to the harmonic oscillator commutation relations (see Appendix C). There-
fore, in complete analogy, we can interpret a(p) and a†(p) as the annihilation and creation operators
for a particle with momentum p. We may define the vacuum state of the Klein-Gordon field as

a(p) |0〉 = 0 ∀p (3.11)

and by continuously applying different a†(p) to the vacuum state we can populate the field. A
state with n particles is expressed as

|p1;p2; . . . ;pn〉 = a†(p1)a
†(p2) · · · a†(pn) |0〉 (3.12)

Similarly, this two equations can be expressed using the field operators in eq. (3.8)

φ+(x) |0〉 = 0 ∀x (3.13)

which is clearly understood, as the field destroys the vacuum at all points in space-time.
Since the creation operators commute we have that

|p1; . . . ;pi; . . . ;pj ; . . . ;pn〉 = |p1; . . . ;pj ; . . . ;pi; . . . ;pn〉 (3.14)

i.e. the order of the creation doesn’t matter, the final state is the same. This is characteristic of
bosons, hence, the Klein Gordon field, give rise to bosons obeying Bose-Einstein statistics.∗

We may also define the number operator, which essentially counts the number of particles, as

N =

∫
d3k N(p) =

∫
d3k a†(p)a(p) (3.15)

with
N |p1;p2; . . . ;pn〉 = n |p1;p2; . . . ;pn〉 (3.16)

obeying the following commutation relations

[N, a†(p)] = a†(p) (3.17a)
[N, a(p)] = −a(p) (3.17b)

Finally, we can also give the expressions for the Hamiltonian eq. (3.4) and the 3-momentum
eq. (3.5) in terms of a(p) and a†(p), which read

H =
1

2

∫
d3p Ep

[
a†(p)a(p) + a(p)a†(p)

]
(3.18)

P =
1

2

∫
d3p p

[
a†(p)a(p) + a(p)a†(p)

]
(3.19)

∗In accordance to the fact that the KG equation is only valid to spin 0 particles.
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3 THE KLEIN-GORDON FIELD ALM

3.2 Normal ordering
If one tries to evaluate the energy of the vacuum from eq. (3.18), the result is that it diverges

due to the term 〈0|a(p)a†(p)|0〉 = 1. These are some of the reasons given in literature:

• QFT Notes, Eduard Massó [Mas19]: The divergence has two sources. The first is related to
the fact that the harmonic oscillator has a non-vanishing zero-point energy, a field contains
in all space-time an infinite amount of oscillators giving an infinite energy. The second source
is due to the integration over all modes in the energy calculation, where the terms of higher
frequency lead to infinite energy.

• QFT Notes, Oxford [Hai11]: This divergence arises because we want too much. We have as-
sumed that our theory is valid to arbitrarily short distance scales, corresponding to arbitrarily
high energies, which is clearly absurd. The integral should be cut off at high momentum,
reflecting the fact that our theory presumably breaks down at some point (most likely far
below the GUT or Planck scale).

To avoid this catastrophe, what we should do is renormalise the energy, set as the zero point
energy the energy of the vacuum and measure the other energies with respect to this one, which
is the only quantity that we can observe

Eq = 〈q|H|q〉 − 〈0|H|0〉 (3.20)

We introduce the normal ordering of operators, denoting the normal product as

N
[
a(p1)a(p2)a

†(p3)
]
= N

[
a(p1)a(p2)a

†(p3)
]
= a†(p3)a(p1)a(p2) (3.21)

Practically, it consist on moving all the creation operators to the left and all annihilation operators
to the right (but conserving the order between them).

From now on we will use this mathematical trick to calculate expectation values such like the
energy of the vacuum state, which now is

E0 = 〈0|N [H]|0〉 = 0 (3.22)

In general, using normal ordering, we will have for a general state |p〉

H |p〉 = N [H] |p〉 = Ep |p〉 (3.23)
P |p〉 = N [P ] |p〉 = p |p〉 (3.24)

We may join the last two into one, using the covariant 4-momentum formulation where Pµ =
(H,P ), we have

Pµ = N [Pµ] =

∫
d3p kµN(p) (3.25)

that acts on a Fock state like

Pµ |p1;p2; . . . ;pn〉 = (p1 + p2 + · · ·+ pn)
µ |p1;p2; . . . ;pn〉 (3.26)

3.3 Causality, time ordering and Feynamn propagator
To really discuss causality, we should ask not whether particles can propagate over space-like

intervals, but whether a measurement performed at one point can affect a measurement at another
point whose separation from the first is space-like. The simplest thing we could try to measure is
the field φ(x), so we should compute the commutator [φ(x), φ(y)] if this commutator vanishes, one
measurement cannot affect the other. In fact, if the commutator vanishes for (x− y)2 < 0 (space-
like separation), causality is preserved quite generally, since commutators involving any function
of φ(x), including π(x) = φ̇(x), would also have to vanish. Of course we know from eq. (3.7) that
the commutator vanishes for x0 = y0 (equal times); now let’s do the more general computation:

[φ(x), φ(y)] =

∫
d3p

(2π)32Ep

[
e−ip(x−y) − eip(x−y)

]
= D(x− y)−D(y − x) (3.27)

10



3 THE KLEIN-GORDON FIELD ALM

where we have defined the Lorentz invariant quantity

D(x− y) ≡ 〈0|φ(x)φ(y)|0〉 =
∫

d3p

(2π)32Ep
e−ip(x−y) (3.28)

which expresses the amplitude for the particle to propagate from y to x.
Let’s study the different cases separately:

a) Equal-time x0 = y0: when the two events happen at equal times, we expect that the commutator
in eq. (3.27) vanishes, in accordance with eq. (3.7). We can factor out the dependency on the
time component in this expression and obtain

[φ(x), φ(y)] ∝
∫ ∞

−∞

d3p√
p2 +m2

sin(p · (x− y)) = 0 (3.29)

as the integrand is odd. So causality is preserved in this case.

b) Space-like (x − y)2 < 0: a Lorentz transformation can be performed on the second term of
eq. (3.27) changing x− y → y − x, therefore D(x− y) = D(y − x) and the commutator will be
identically 0, preserving causality.

c) Time-like (x−y)2 > 0: causality is preserved, just because the two points are causally connected
and there exist NO Lorentz transformation that takes x − y → y − x, so the commutator is
allowed to have a nonzero value. In fact, the value of the commutator in this case give us the
Feynman propagator ∆ for mesons.

To summarise, the previous results can be written in compact form like

[φ(x), φ(y)] =


0 (x− y)2 < 0

iδ3(x− y) x0 = y0

i∆(x− y) (x− y)2 > 0

(3.30)

The Feynman propagator ∆(x − y) is exactly the function that describes the propagation of
a particle created at the point x and annihilated at y (if x0 < y0 and viceversa if x0 > y0). The
expression for the propagation of a meson in the Klein-Gordon field is

i∆(x− y) ≡ 〈0|T {φ(x)φ(y)}|0〉 = θ(x0 − y0) 〈0|φ(x)φ(y)|0〉+ θ(y0 − x0) 〈0|φ(y)φ(x)|0〉 (3.31)

where T {−} is the time ordering operator which time orders the operators with the latest hap-
pening to the left and θ(x) the Heaviside step function.

The explicit expression for the propagator follows from eqs. (3.28) and (3.31)

i∆(x− y) =
∫

d3p

(2π)32Ep

[
θ(x0 − y0)e−ip(x−y) + θ(y0 − x0)eip(x−y)

]
(3.32)

with only one of the two terms surviving once x and y are fixed. It somehow represents the
fluctuations of the vacuum as it expresses the propagation of virtual particles which are causally
connected.

To obtain the relation between the Feynman propagator and the Klein-Gordon equation we
should work out the expression

(∂2 +m2)∆(x− y)

with the propagator given by the time ordering of the fields in eq. (3.31). It is convenient to
introduce the identity

∂tT {A(t), B(t′)} = T
{
Ȧ(t)B(t′)

}
+ δ(t− t′)[A(t), B(t′)] (3.33)

where the derivative is respect to the time inside φ(x), this is why there is no time derivative of
the second field which is evaluated at y. Also note that, the spatial derivative commute with the

11



3 THE KLEIN-GORDON FIELD ALM

time ordering, i.e. ∂iT {φ(x)φ(y)} = T {[∂iφ(x)]φ(y)}, again ∂i = ∂/∂x. Thus, for our case, we
have

∂0∆(x− y) = T
{
φ̇(x)φ(y)

}
+ δ(x0 − y0)������:0

[φ(x), φ(y)]

∂20∆(x− y) = T
{
φ̈(x)φ(y)

}
+ δ(x0 − y0)[φ̇(x), φ(y)] (3.7)

= T
{
φ̈(x)φ(y)

}
− iδ4(x− y)

In the last equality we have used the canonical commutation relations and the fact that δ(x0 −
y0)δ3(x− y). Putting together all the results we have

(∂20 − ∂2i −m2)(−i)T {φ(x)φ(y)} = −iT
{
[(∂20 − ∂2i −m2)φ(x)]φ(y)

}
− δ4(x− y)

The first term cancels because φ(x) itself is a solution to the KG equation and we are left with the
relation

(∂2 +m2)∆(x− y) = −δ4(x− y) (3.34)

so the propagator is the Green’s function of the Klein-Gordon equation.∗ Nevertheless, it is con-
venient to change to the momentum (or Fourier) space as expressions adopt a much simpler form.
By defining the propagator in momentum space by

∆(x) =

∫
d4p

(2π)4
e−ipx∆(p) (3.35)

the KG equation reads
(−p2 +m2)∆(p) = −1 (3.36)

which is a simple algebraic equation whose solution is

∆(p) =
1

p2 −m2
(3.37)

Obviously, this last expression is equivalent to eq. (3.31) in coordinate space, we just have to
take the inverse Fourier transform of eq. (3.37) to recover the original expression†.

The propagator is extremely useful when we consider that there are sources of field j(x) in the
system, this is the case of the inhomogeneous KG equation

(∂2 +m2)φ(x) = j(x) (3.38)

By the method of the Green function, which is the propagator, the equation can be solved and the
result reads

φ(x) = φ0(x)−
∫
d4x′∆(x− x′)j(x′) (3.39)

It is useful to visualise it in terms of Feynman diagrams. For y0 < x0, the vacuum expectation
value becomes 〈0|ψ(x)ψ(y)|0〉 and it is interpreted as the creation of a meson at y that propagates
through space-time until it is annihilated at x. On the other hand, for y0 > x0, the surviving
term in eq. (3.31) is 〈0|ψ(y)ψ(x)|0〉, the propagation is pictured as a meson that propagates from
x (where it is created) to y (where it is annihilated).

A comment on the origin of the propagator [HM84] The reader must be familiar with the
perturbation theory of the Schrodinger equation. Consider the second order term of the expansion,
its relativistic generalisation is

T
(2)
fi = −i

∑
n 6=i

Vfn
1

Ei − En
Vni2πδ(Ef − Ei)

∗This result can be generalised to any propagator in QFT.
†This is not so trivial as the integral has two divergences over the real axes which must be avoided by expanding

the integration over the complex plane and making use of the residual theorem.
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Figure 3.1: Left: y0 < x0, meson propagated from y to x. Right: y0 > x0, meson is propagated
from x to y.

Apart from the δ, the rest is equal to the non-relativistic formula, we have just introduced the δ
in the energies of the final and initial state just to impose energy conservation.∗

Later on, we will see that a Feynman diagram is a sum over all possible time-ordered diagrams,
i.e. of all the orders in the expansion. When we talk about the order, we are referring to the number
of vertices and, equivalently, the number of propagators (of virtual particles to be transmitted).
So, the second order term implies that there are 2 vertices so it can be written as

T
(2)
fi ∼ Vfc

1

Ei − Ec
Vci + Vfc

1

Ei − 2Ei − Ec
Vci = Vfc

2Ec

E2
i − E2

c

Vci

where c is the virtual particle that propagates during the interaction. To determine the propagator,
we calculate

E2
i = (pA + pB)

2 + (pA + pB)
2 = (pA + pB)

2 + p2

E2
c = m2

c + p2

so the term in the perturbation is

T
(2)
fi ∼ Vfc

2E2
c

p2 −m2
c

Vci

where p = pA + pB is the total initial 4-momentum. We see that inside this term there is hidden
the propagator of eq. (3.37).

3.4 Complex field
Previously, in eq. (3.8) we imposed the field to be real, we will remove this constraint and

consider fields where φ 6= φ†. The Lagrangian density function for a complex KG field is

L = (∂µφ
†)(∂µφ)−m2φ†φ (3.40)

Note that the complex field can always be expanded into two real fields φ(x) = (φR(x)+iφI(x))/
√
2

giving rise to two separate Lagrangians L = LR(φR) +LI(φI) which proves that the whole of it is
real.

The equation of motion for the complex field is equal to that of the real field (eq. (3.2))

(∂2 +m2)φ = 0 (3.41)

Also, the conjugate momenta is π = φ̇† and the Hamiltonian of eq. (3.4) is valid. However, the
Fourier expansion changes

φ(x) =

∫
d3p√

(2π)32Ep

[
a(p)e−ipx + b†(p)eipx

]
(3.42)

∗This process is known as old-fashioned quantum field theory (OQFT).
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where two creation operators a†(p), b†(p) and two annihilation operators a(p), b(p) exist.
By imposing the same equal time commutation relations eq. (3.7), [φ(x), φ†(y)], we obtain the

commutation relations that verify the creation and annihilation operators:

[a(p), a†(p′)] = δ3(p− p′)

[b(p), b†(p′)] = δ3(p− p′)

[a(p), b(p′)] = [a†(p), b†(p′)] = 0

(3.43)

and any other relation not listed is identical to 0.
We return to the problem of causality, from eq. (3.42) we see that the action of the field φ(x)

is to create particles of time b and destroy particles of type a at position x, while φ†(y) creates
particles of type a and destroy type b particles at position y. Then, the commutator [φ(x), φ†(y)]
will have nonzero contributions which must cancel outside the light cone. The first term represents
the propagation of a negatively charged particle from y to x, the second term represents the
propagation of a positively charged particle from x to y. In order for these two processes to be
present and give cancelling amplitudes, both of these particles must exists, and they must have
the same mass. In QFT, causality requires that every particle have a corresponding antiparticle
with the same mass and opposite quantum numbers (for the real KG field, the particle is its own
antiparticle) [PS95].

The vacuum state |0〉 is defined as that

a(p) |0〉 = 0 & b(p) |0〉 = 0 ∀p (3.44)

The action of the creation operators is to create particles but now the particles created are different
since we are using distinct creation operators, we will represent the two particles like

a†(p) |0〉 =
∣∣p, π+

〉
, b†(p) |0〉 =

∣∣p, π−〉
It follows that, by continuously applying the creation operators, the resulting state will be like∣∣p1, π

+;p2, π
+;p3, π

−;p4, π
+
〉
= a†(p1)a

†(p2)b
†(p3)a

†(p4) |0〉 (3.45)

Finally, let us introduce the expression for the operators N , Pµ∗

N =

∫
d3p N(p) =

∫
d3p [N+(p) +N−(p)] =

∫
d3p [a†(p)a(p) + b†(p)b(p)] (3.46)

Pµ =

∫
d3p pµ[N+(p) +N−(p)] (3.47)

which act on a state of the Fock space like in eq. (3.45) as

N
∣∣p1, π

±; · · · ;pn, π
±〉 = n

∣∣p1, π
±; · · · ;pn, π

±〉 (3.48)

Pµ
∣∣p1, π

±; · · · ;pn, π
±〉 =

 n∑
j=1

pµj

∣∣p1, π
±; · · · ;pn, π

±〉 (3.49)

Notice that it counts both, the number of particles of type π+ and of type π−, without any
distinction. In particular, for H = P 0, the previous expression gives the same energy for both
particles, Ep =

√
p2 +m2.

The question is which operator enables us to distinguish between particles? The answer arises
naturally once we notice that the field has an internal symmetry of the type φ(x)→ e−iqθφ(x) that
preserves the Lagrangian. Consequently, from Noether’s theorem, the symmetry has associated a
conserved current

jµ = −iq
[
(∂µφ†)φ− φ†(∂µφ)

]
(3.50)

With this, we can compute the conserved charge Q that reads in momentum space

Q = q

∫
d3p [N+(p)−N−(p)] (3.51)

∗In both we have already applied normal ordering.
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This equation means that, every time we add a particle of type π+ the total charge increments by 1
unit of q but if we add a particle of type π− the total charge reduces by 1 unit of q. Mathematically,
this operator acts on the Fock states as

Q
∣∣p, π±〉 = ±q ∣∣p, π±〉 (3.52)

For the first time, we are able to distinguish between the two types of particles. Moreover, we have
found an incredible result, if we associate Q with the total electric charge and q the elementary
charge (which we can set q = 1), then the relationship between π+ and π− is that one is the
antiparticle of the other because they both have the same mass and energy but opposite charge.
It is a convention to choose π− as the particle∗ and π+ as the antiparticle. We write π− = π+ and
π+ = π− to express the antiparticle.

∗This choice must be familiar to the reader as electrons have negative charge although this theory is only valid
for spin 0 particles.
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4 Dirac Field
In deriving the Dirac field, he sought to find an equation which was first order in both time

and spatial coordinates. He took as a starting point the Klein-Gordon eq. (3.2), which can be
expressed as

(iβµ∂µ +m)(iγν∂ν −m)ψ(x) = 0 (4.1)

where βµ and γν are 4-vectors.
Notice that we have obtained two terms linear in ∂µ so if we imposes that the field is a solution

of the first term then the whole equation automatically vanishes and we are lead to the Dirac
equation

(iγµ∂µ −m)ψ(x) = 0 (4.2)

The next step is to find which conditions must verify the 4-vectors βµ and γµ. We will do so
by imposing that eq. (4.1) reduces to the KG equation (eq. (3.2)), after multiplying the terms we
obtain [

βµγν∂µ∂ν − i (γµ − βµ)m+m2
]
φ(x) = 0 (4.3)

This implies that βµ = γµ for the cross terms to vanish. Then, in the first term, all mixed terms
µ 6= ν must also vanish if we compare it with eq. (3.2) so γµγν = 0 and, for the case when µ = ν,
the result of the multiplication must be proportional to the Minkowski metric ηµν . These two
conditions can be reduced into 1, which is usually quoted as the fundamental property of the
γ-matrices

{γµ, γν} = 2ηµν (4.4)

where {A,B} = AB + BA denoted the anticommutator. At this point, Dirac noted that the
components of the 4-vector γµ could not be scalars and neither 2 × 2 matrices (for example the
Pauli matrices with the identity, γµ = (I,σ)) as they do not verify eq. (4.4). He then though:
“I suddenly realised that there was no need to stick to quantities which can be represented by
matrices with just two rows and columns. Why not go to four rows and columns?”. Indeed, this
idea solved the problem and he found the explicit form of the γ matrices

γ0 =

 I 0

0 I

 , γi =

 0 σi

−σi 0

 (4.5)

where all of the components inside are 2× 2 matrices. It is customary to work using this notation
as every matrix can be divided in 4 blocks and treat each of them independently of the other.

In fact, there are infinite choices of the γ matrices that differ from an unitary matrix of those
in eq. (4.5). That choice is called Dirac representation which is more useful in the non-relativistic
limit, there is also the Weyl (or chiral) representation, useful in the extreme relativistic case, where
the γ matrices are

γ0 =

0 I

I 0

 , γi =

 0 σi

−σi 0

 (4.6)

Together with the 4-matrices, we also define γ5 as the complete antisymmetric combination of
the 4 other matrices

γ5 = γ5 ≡ iγ0γ1γ2γ3 =
i

4!
εµνσργ

µγνγσγρ (4.7)

and the set of matrices {σµν} (do not confuse with the Pauli matrices σi) defined by

σµν ≡ i

2
[γµ, γν ] (4.8)

Note that this is not a tensor as it doesn’t transform like it should but we preserve the notation
to lower the indices σµν = ηµαηνβσ

αβ .
This matrices are in fact the boost and rotation generator of the Lorentz group. A 4-vector field

φ(x) that transforms under boosts and rotations according to σµν is called a Dirac spinor. Note
that, the rotation generators σµν is just a 3-dimensional spinor transformation matrix replicated
twice (remember that Pauli matrices where the generators of rotations in SU(2)).
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We also introduce the matrix vector Σ as a generalisation to 4 dimensions of the spin operator
σ for two spinors. Its components are given by

Σi =
1

2
εijkσ

jk (4.9)

which in our case gives the 3 component vector

Σ = (σ23, σ31, σ12) (4.10)

Comment on Dirac’s equation In eq. (4.2) we have defined Dirac equation, without knowledge
of what the hell where those γ’s but know we know that are matrices so, how can we subtract
a scalar (the mass) to a matrix? To fix this, we should implicitly read Dirac equation as (i∂µ −
mIn)φ(x) = 0n where In is the identity matrix of the space where the γ matrices live, essentially
Cn×n, the same with 0n and φ(x) an n-dimensional complex field. Similarly, the right hand side
of eq. (4.4) there appears a number ηµν while the left hand side is a 4 × 4 matrix, therefore the
right hand side must be read as ηµνIn although we don’t write the identity matrix.

More over, as the contraction with the γ matrices occurs quite often, Feynman invented the
slash notation

/A = γµAµ (4.11)
So Dirac’s equation is completely simplified by writing /∂ = γµ∂µ giving

(i/∂ −m)ψ(x) = 0 (4.12)

The solution ψ(x) is called a Dirac spinor, and from the block construction of the γ matrices,
it can be represented as

ψ =

ψL

ψR

 (4.13)

where ψL and ψR are two 2-dimensional Pauli spinors. Very roughly speaking, the four components
of the bispinor account for the two possible spin states of a fermion, along with the two possibilities
of a particle or an antiparticle. We have also added a bit of suggestive notation in terms of
subscripts, since the L and R refer to the handedness of a particle. Though we haven’t yet derived
the properties of spin, we will find that a right-handed particle’s intrinsic angular momentum is in
the same direction as the spin (as given by the right-hand rule), and that of a left-handed particle
is the the reverse. [Gol17]

And finally, what type of particles does Dirac equation describe? For the case n = 4, which
is the case we will study, Dirac equation serve to explain spin 1/2 particles. But not only this,
because only 2 degrees of freedom (DoF) are needed to describe those types of particles, the fact
that we have 4 DoF implies that we give rise to a second particle (with the same mass, energy...)
which is the antiparticle of the first one.

Properties of γ matrices The basic properties of the γ matrices to keep in mind are:

Square (γµ)2 = ηµµI4

Anticommute {γµ, γν} = 0 µ 6= ν ⇒ γµγν = −γνγµ

Trace Tr γµ = 0

Dagga (γµ)† = γ0γµγ0

γ5 (γ5)2 = 1, γ5 = (γ5)† & {γ5, γµ} = 0

Slash product /a/b = ab− iσµνaµbν

Commutator [γ5, σµν ] = 0

Product σµνγ5 σµνγ5 = (−i/2)εµναβσαβ

For completeness, let us recap here the complete form of all the matrices defined in the Dirac
and Weyl representation:
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Dirac Weyl

γ0

 I 0

0 I

 0 I

I 0


γi

 0 σi

−σi 0

  0 σi

−σi 0


γ5

0 I

I 0

 −I 0

0 I


σ0i i

 0 σi

σi 0

 i

−σi 0

0 σi


σij εijk

σk 0

0 σk

 εijk

σk 0

0 σk


Lagrangian The lagrangian density for the Dirac equation is

L =
i

2
ψ
↔

/∂ψ −mψψ (4.14)

where we have defined the adjoint field ψ as

ψ = ψ†γ0 (4.15)

and the meaning of the ↔ over the derivative is used to indicate that it is acting on both sides of
the equation, i.e.

ψ
↔

/∂ψ = ψ(/∂ψ)− (/∂ψ)ψ (4.16)
The reason for using the adjoint, instead of simply the ψ† in eq. (4.18), is because the product

ψ†ψ is not a Lorentz while ψψ is.
The Dirac equation for the field (eq. (4.2)) by applying the Euler-Lagrange equation eq. (1.4)

to the adjoint field ψ. However, we could have also taken the Euler-Lagrange equations from the
field itself, obtaining the adjoint Dirac equation

ψ(i
←

/∂ +m) = 0 (4.17)

where here
←

/∂ denotes that the derivative acts on the left.
Although, eq. (4.18) is hermitian, usually it is used for practical calculations the more user

friendly, but not hermitian, version

L1 = ψ(x)(i/∂ −m)ψ(x) (4.18)

Hamiltonian From the Lagrangian density, it is not hard to find the Hamiltonian for the system.
First of all, find using eq. (4.18) that the conjugate momentum to ψa is

πa =
∂L
∂ψ̇a

= iψ†
a (4.19)

where the label a runs from 1 to 4 and indicates the position in the Dirac spinor. Then, sepa-
rating the /∂ into time and space and substituting by the conjugate momentum we arrive to the
Hamiltonian

H = i

∫
d3xψ†(x)

∂

∂t
ψ(x) (4.20)

By covariazing the later result we deduce that the 4-momentum operator for the Dirac field is

Pµ = i

∫
d3xψ†(x)∂µψ(x) (4.21)
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4.1 Solutions to Dirac equation
4.1.1 Stationary particles

The solutions to the Dirac equation are represented by a complete set of orthonormal states
{u±(p), v±(p)} that span the 4-dimensional space. Consider a bispinor field that’s entirely inde-
pendent of position, in which case the Dirac equation reduces to

(iγ0∂0 −m)ψ = 0 −→

{
iψ̇L −mψR = 0

iψ̇R −mψL = 0
(4.22)

which quickly yield four linearly independent solutions,

u±(x) =
√
m

ξ±
ξ±

e−imt , v∓(x) =
√
m

 ξ±

−ξ±

eimt (4.23)

where ξ± are the eigenstates of the 3rd Pauli matrix

ξ+ =

1

0

 , ξ− =

0

1

 (4.24)

where σzξ± = ±ξ±. The two-fold degeneracies in the energy for a given p results from the two
possible spin orientations.

Applying the Hamiltonian, i.e. P 0, reveals the energy of the particles

Hu± = mu± (4.25a)
Hv± = −mv± (4.25b)

For the v states, the energy of a stationary particle (the mass term) is negative. We saw earlier
that these are the positrons, and they present their own particular problems.

4.1.2 Free particles

Assuming that the solutions must be of the form of plane waves, ψ(p) ∝ e±ipx, yields (in the
Weyl representation∗) the coupled set of equations −m ±(p0 − σ · p)

±(p0 + σ · p) −m

ψL

ψR

 = 0 (4.26)

From the first and second line, independently, we obtain the relations

ψL = ∓p0 − σ · p
m

ψR , ψR = ∓p0 + σ · p
m

ψL (4.27)

where the + sign corresponds to positive energy solutions (u±e−ipx) and the − to negative energy
(v±eipx). In the notation of a Dirac spinor this 4 solutions read

u±(p) =
m√

Ep ± |p|

 ξ±
Ep±σ·p

m ξ±

 , v∓(p) =
m√

Ep ± |p|

 ξ±

−Ep±σ·p
m ξ±

 (4.28)

The normalisation of the spinors in eq. (4.23) and eq. (4.28) is chosen according to the following
relations

u†r(p)us(p) = v†r(p)vr(p) = 2Epδrs

u†r(p)vs(−p) = 0

}
←→

{
ur(p)us(p) = −vr(p)vr(p) = 2mδrs

ur(p)vs(p) = 0
(4.29)

and satisfy the completeness relation∑
r=±

[ur,a(p)ur,b(p)− vr,a(p)vr,b(p)] = δab (4.30)

∗See Section 3.14 in [Mas19] for the solutions in the Dirac representation.
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Helicity We can combine the spin operator with the momentum of a particle to produce a helicity
operator:

ĥ =
Σ · p
|p|

= Σp (4.31)

The helicity operator produces +1/2 for a right-handed beam and −1/2 for a left-handed one.
This is the reason for choosing such labels for the Dirac spinor eq. (4.13).

Relativistic (and only relativistic) fermions are helicity eigenstates. If the spin and momentum
are aligned, the particle is considered right-handed in the sense that a particle propagating in the
direction given by your right-hand thumb will be spinning in the direction indicated by the curl of
your fingers. The left handed case (u− propagating in the +z-direction, for instance) is the same,
but for your left hand. These results summarise as

Σpu± = ±1

2
u± (4.32a)

Σpv± = ∓1

2
v± (4.32b)

Helicity is a useful property of particle because it is a conserved quantity. However, it is not
conserved under Lorentz transformation. Consider a particle moving in the +z − direction with
spin +1/2, if we measure the particle in its rest frame we will find this exact value for the spin.
Now, change to a moving frame were we see the particle moving in the −z-direction, the value of
the spin remains 1/2 but the other part has changed sign. Therefore, we conclude that the value of
helicity is can change depending on the reference frame. Only in cases where the particle travels at
the speed of light (massless particles), so there is no reference frame where the particle has flipped
the direction of motion, helicity will be conserved in time and under Lorentz boosts.

4.2 Quantization
Like we did for the complex Klein-Gordon field, we expand the Dirac field in momentum space

using the Fourier transform

ψ(x) =

∫
d3p√

(2π)32Ep

∑
r=±

[
cr(p)ur(p)e

−ipx + d†r(p)vr(p)e
ipx
]
= ψ+(x) + ψ−(x) (4.33)

where ψ+ (ψ−) contains the positive (negative) energy part, and therefore, all the annihilation
(creation) operators c±(p) (d†±(p)). The same for the conjugate field

ψ(x) =

∫
d3p√

(2π)32Ep

∑
r=±

[
c†r(p)ur(p)e

ipx + dr(p)vr(p)e
−ipx

]
= ψ

−
(x) + ψ

+
(x) (4.34)

To quantize the field, similar to what we did for the KG field in eq. (3.7), we impose the
equal-time canonical anticommutation relations

{ψa(t,x), ψ
†
b(t,y)} = δabδ

3(x− y)

{ψa(t,x), ψb(t,y)} = {ψ†
a(t,x), ψ

†
b(t,y)} = 0

(4.35)

which imply the following anticommutation relations in momentum space

{cr(p), c†s(p′)} = δrsδ
3(p− p′)

{dr(p), d†s(p′)} = δrsδ
3(p− p′)

(4.36)

with the other combinations vanishing.

Fock space This operators are defined like all creation and annihilation operators that the reader
must have seen in his life. In particular, the vacuum state is such that

cr(p) |0〉 = dr(p) |0〉 = 0 ∀p (4.37)
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or in position space
ψ+(x) |0〉 = ψ

+
(x) |0〉 = 0 ∀x (4.38)

A state in this space is a concatenation of applications of c†r and d†s

|p1, r1;p2, r2; · · · ;pn, rn〉 = c†r1(p1)d
†
r2(p2) · · · c†rn(pn) (4.39)

Let’s have a look at what happens when we exchange two particles i ↔ j or the same type. In a
system with only two particles

|p, r;p′, s〉 = c†r(p)c
†
s(p

′) |0〉 =(4.36)
= −c†s(p′)c†r(p) |0〉 = |p, r;p, s〉 − |p′, s;p, r〉 (4.40)

There is a minus sign in discordance, the state is antisymmetric under the interchange of particle
labels as required for fermions. If p = p′ and r = 0, the last results implies that

|p, r;p; r〉 = 0 (4.41)

Thus regaining Pauli’s exclusion principle saying that two particles cannot exist in the same single
particle state.

All of this is a consequence of the quantization where we used anticommutators instead of
commutators. In a sentence, commutators lead to Bose-Einstein statistics while anticommuta-
tors to Fermi-Dirac statistics. However, this implication can not be deduce from a mathematical
perspective, it is just an association that we can make given what physicist observe in nature.

Define the number operators

Nr(p) = c†r(p)cr(p) , Nr(p) = d†r(p)dr(p) (4.42)

These two creation and annihilation operators create two different types of particles. However,
they both share some common characteristics. For example, they have the same mass as both
fields are solutions from the same Dirac equation (eq. (4.2)) and their spin is the same. But, as
noted in eq. (4.25), one has positive energy while the other has negative energy. This is a problem
as the energy could go to −∞, thus any state would be stable. How to fix this? Well, normal
order...

Using the expansion in eq. (4.33), we obtain an expression for the 4-momentum in terms of the
creation/annihilation operators

Pµ =

∫
d3p pµ

∑
r=±

[
c†r(p)cr(p)− dr(p)d†r(p)

]
(4.43)

When taking the expectation value of this with the vacuum state, the term in c’s cancels but
the second term diverges. Thus, we must introduce the normal ordering to this expression to
find the correct value. Its definition is a bit different than the one given for the KG field as the
operators cr(p) and dr(p) anticommute thus, whenever we exchange two fields or operators, we
must introduce a minus sign in front of it:

N [ψaψb] = N
[
ψ+
a ψ

+
b + ψ−

a ψ
+
b + ψ+

a ψ
−
b + ψ−

a ψ
−
b

]
= ψ+

a ψ
+
b + ψ−

a ψ
+
b − ψ

−
b ψ

+
a + ψ−

a ψ
−
b (4.44)

In the case of matter, the term d†r(p)dr(p), once normal ordered, will turn to −d†r(p)dr(p) =
−Nr so the 4-momentum normal ordered is

N [Pµ] =

∫
d3p pµ

∑
r

[
Nr(p) +Nr(p)

]
(4.45)

In particular, the energy of the whole system is

H = N
[
P 0
]
=

∫
d3p Ep

∑
r

[
Nr(p) +Nr(p)

]
(4.46)

Note that the two types of particles contribute in the same manner to the final energy of the
system, in other words, there is no way to distinguish the two particles by just measuring the
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energy of the system. This is clearly seen in the definition of the Fock state eq. (4.39), while on
the right we have applied the two creation operators, this is not reflected on the left as both are
represented in the same way by their momentum and spin.

We must find an operator that can distinguish between the two particles. As in the case for the
complex KG field, this operator is the electric charge Q, defined in the position and momentum
space as

Q = q

∫
d3x ψ†ψ = q

∫
d3p

∑
r=±

[
Nr(p)−Nr(p)

]
(4.47)

The difference is clearly seen, if we add a particle of type c the charge Q = q but if we add a
particle of type d then Q = −q. If we identity the mass in Dirac’s equation (4.2) as the electron
mass, then q = −e and the two particles can be identified as electrons and positrons. With this
result, a particle state can no longer be specified with the momentum and spin only but we must
also use the electric charge

|p, r, q〉 = c†r(p) |0〉 , |p, r,−q〉 = d†r(p) |0〉 (4.48)

4.3 The fermionic propagator
The Dirac propagator, valid for spin 1/2 particles, is defined in a similar way as the KG

propagator eq. (3.31),
iSF (x− y) = 〈0|T

{
ψ(x)ψ(y)

}
|0〉 (4.49)

where the time ordering for Dirac fields is

T
{
ψ(x)ψ(x)

}
= θ(x0 − y0)ψ(x)ψ(y)− θ(y0 − x0)ψ(x)ψ(x) (4.50)

This change in sign, in front of the term y0 > x0, is a consequence of the anticommutation relations
imposed for the Dirac fields eq. (4.35).

An expression for the propagator is obtained by the method of the Greens function for eq. (4.2)

(i/∂ −m)SF (x− y) = δ(x− y) (4.51)

This partial differential equation is easily solved in momentum space, with the Fourier transform
of SF (x)

SF (x) =

∫
d4p

(2π)4
e−ipxSF (p) (4.52)

which gives, once substituted in eq. (4.51)

iSF (p) =
i

/p−m+ iε
= i

/p+m

p2 −m2 + iε
(4.53)

As for the meson propagator, it is useful to visualise the fermion propagator in terms of Feynman
diagrams. For y0 < x0, only the first term in eq. (4.50) survive and it is interpreted as the creation
of a e− in x that propagates through space-time until it is annihilated in y. On the other hand,
for y0 > x0, the propagation is pictured as a positron that propagates backwards in time from x
(where it is created) to y (where it is annihilated).

Note that in the diagrams, the fermion line points from the vertex associated with the ψ(y)
field to the vertex associated with the ψ(x) field, i.e. the arrow runs in the same direction as time
for electrons but in the opposite direction for positrons.
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Figure 4.1: Left: y0 < x0, electron is propagated from y to x. Right: y0 > x0, positron is
propagated from x to y.
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5 The EM field
We shall develop a covariant theory of electromagnetism starting from the classical point of

view, starting with the explicit fields E and B to the relativistic formulation using the 4-potential
Aµ(x) = (φ,A).

5.1 The classical field
The Maxwell’s equations for the electric E and magnetic B fields read

∇ ·E = ρ(t,x) (5.1a)
∇ ·B = 0 (5.1b)

∇×E = −∂B
∂t

(5.1c)

∇×B =
∂E

∂t
+ j(t,x) (5.1d)

where ρ(t,x) is the charge density and j(t,x) the current density.
The two fields can be expressed in terms of some potential functions φ(t,x) and A(t,x) as

E = −∇φ− ∂A

∂t
(5.2a)

B = ∇×A (5.2b)

However, even if we know the expression for the EM fields, there is an infinte number of potentials
related to those fields. This is called gauge freedom as a change in the potentials of the form,

φ→ φ+
∂θ

∂t
(5.3a)

A→ A−∇θ (5.3b)

where θ(t,x) is some scalar function, leaves the fields unchanged.
This freedom comes from the fact that Maxwell’s equations contain 6 variables (3 for each

field) but eq. (5.1) only impose 4 restrictions on them, so there are 2 degrees of freedom. This
two degrees of freedom give rise to the two orthogonal polarisations of light (vertical/horizontal,
left-handed/right-handed,...). However, if we express the fields in terms of the potentials eq. (5.2),
they have 4 variables, too many dof for our description. There are two of them that are redundant
and give rise to the gauge freedom in eq. (5.3).

The way to constrain this extra dof is to impose a gauge fixing condition. In literature, the
most used ones are:

• Coulomb gauge: defined by the condition

∇ ·A = 0 (5.4)

There are many properties related to this gauge fixing condition∗ but the most interesting
one implies that

k ·A = 0 and φ = 0 (5.5)

i.e. the wave-vector must be orthogonal to the potentials and, indeed, to the fields. Thus,
the Coulomb gauge only allows two transverse polarisation modes.

• Lorentz gauge: this is a covariant extension of the previous which imposes that

∂µA
µ = 0 (5.6)

This condition give rise to wave propagating at the speed of light.
∗Just take a look at the Wikipedia page: https://en.wikipedia.org/wiki/Gauge_fixing#Coulomb_gauge.
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5.2 Covariant formulation
To express Maxwell’s equations in covariant form, we introduce the antisymmetric field tensor

Fµν =


0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (5.7)

In terms of Fµν and the charge-current density jµ = (ρ, j), the 4 equations (5.1) become

∂νF
µν = jµ (5.8a)

∂(λFµν) = 0 (5.8b)

The symbol (λµν) is used to indicate all the possible cyclic symmetric combinations of the indices
λµν.

From the antisymmetry of the EM tensor, taking the derivative with respect to µ in the first
equation in eq. (5.8) gives

∂µj
µ = ∂µ∂νF

µν = 0 (5.9)
in consistency with the charge current conservation of the electromagnetic theory.

An easier expression of Fµν is given in terms of the 4-potential Aµ as

Fµν = ∂νAµ − ∂µAν = ∂[νAµ] (5.10)

In terms of the potentials, the first of the covariant Maxwell equation reads

∂2Aµ − ∂µ∂νAν = jµ (5.11)

Note that these two equations are also invariant under a gauge transformation by a total derivative

Aµ → Aµ + ∂µθ (5.12)

A Lagrangian density compatible with the field equations (5.8) is

L = −1

4
FµνF

µν − jµAµ (5.13)

Unfortunately, this form of the Lagrangian is not suitable to quantize the field as the momentum
conjugate of the first component of the potential A0 = φ is identically zero. See this from

πµ =
∂L
∂Ȧµ

= −Fµ0

and from the antisymmetry of Fµν it follows that π0 ≡ 0. The way this has been fix in history is
by adding a term proportional to the Lorentz gauge eq. (5.6) which will eventually be made 0 but
we leave it there for convenience. The form of the EM Lagrangian suitable for quantization is

LEM = −1

4
FµνF

µν − jµAµ − 1

2
(∂µA

µ)2 = −1

2
(∂νAµ)(∂

νAµ)− jµAµ (5.14)

From this Lagrangian we can safely construct the conjugate momenta

πµ = −∂0Aµ (5.15)

and the equation of motion reads
∂2Aµ = jµ (5.16)

which looks like a simplified version of what we previously obtained (some see this as a sign that
we are moving in the right direction). However, eq. (5.11) and eq. (5.16) are only equivalent if the
potential satisfies the Lorentz gauge

∂µA
µ = 0 (5.6)

Hence, to carry out the quantization of the theory but end up with Maxwell’s equationseq. (5.8),
we must in the first place quantize the theory for the general Lagrangian eq. (5.14) and after that
impose the Lorentz gauge eq. (5.6) or an equivalent constraint.
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5.3 Quantization
Consider a free field propagating in vacuum, so jµ = 0, the EoM eq. (5.16) reduce to the wave

equation
∂2Aµ = 0 (5.17)

This is equivalent to the Klein-Gordon field in the limit of massless particles, so much of the
information gained when solving that type of fields can be applied here by setting m = 0.

Equation (5.17) enables us to expand the solution as a superposition of plane waves,

Aµ =

∫
dk√

(2π)32ωk

3∑
r=0

[
εµr (k)ar(k)e

−ikx + ε∗µr (k)a†r(k)e
ikx
]
= A+µ(x) +A−µ(x) (5.18)

The sum is taken over the 4 possible degrees of freedom for the polarization represented by the
4-vectors εµr (k). Although this theory give us 4 polarization modes, only two are physical (seen in
nature), those are the transverse polarization, the other two correspond to longitudinal polarization
(in the direction of motion) and a scalar polarization (in the time component). For now, the set
{εµr (k)} forms a complete set of solutions and verifies the following normalisation and completeness
conditions

εµr (k)εsµ(k) = ηrs (5.19)∑
r

ηrrεµr (k)ε
ν
r (k) = −ηµν (5.20)

for r, s = 0, . . . , 3 and ηrs being the Minkowski metric defined like in the very beginning of the
notes∗. If the propagation is on the direction k, a specific choice of the polarization vectors is

εµ0 (k) = nν = (1, 0, 0, 0) (5.21a)

εµ3 (k) = (0, ε3(k)) = (0,k/|k|) = kµ − (kn)nµ√
(kn)2 − k2

(5.21b)

that correspond to the scalar and longitudinal polarisations. The other two, the physical ones,
ε1, ε2 are mutually orthogonal vectors of ε3 (k), i.e.

εr(k) · εs(k) = δrs r, s = 1, 2, 3 (5.22)

We now apply the canonical quantisation relations like in the previous types of fields. Taking
the conjugate momenta πµ from eq. (5.15) we impose the equal time commutation relations

[Aµ(t,x), Ȧν(t,y)] = −iηµνδ(x− y)

[Aµ(t,x), Aν(t,y)] = [Ȧµ(t,x), Ȧν(t,y)] = 0
(5.23)

Apart from the factor −ηµν , these equations are identical with the commutation relations (3.7)
of four independent KG fields, and each component Aµ(x) satisfies the wave equation (5.17) for
particles of mass zero.

Gupta-Bleuler formalism Unfortunately, we cannot take simply the Lorentz condition in
eq. (5.6) to fix the gauge freedom as it is incompatible with the commutation relations. Take
the total derivative with respect to Aµ in eq. (5.23),

[∂µA
µ(x), Aν(y)] = −i∂νδ(x− y)

that it is not identically 0. The problem is solved by introducing the Gupta-Bleuler condition that
imposes a weaker constrain

∂µA
+µ(x) |Ψ〉 = 0 , 〈Ψ| ∂µA−µ(x) (5.24)

∗Some books, instead of using the metric, define some new variables ξ0 = −1 and ηi = 1. I find more clarifying
to use the metric here, instead of having to remember the definition of those variables, in any case, remember that
this depends on the definition. If one prefers to use ηαβ = diag(−+++) then, in this chapter, replace all ηrs → −ηrs
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that involves annihilation operators only. The Lorentz condition follows from this one for expec-
tation values

〈Ψ|∂µAµ|Ψ〉 = 〈Ψ|∂µA+µ(x) + ∂µA
−µ(x)|Ψ〉 = 0 (5.25)

In momentum space, we obtain the conditions

[a3(k)− a0(k)] |Ψ〉 = 0 , 〈Ψ| [a†3(k)− a
†
0(k)] (5.26)

This is a constraint on the linear combinations of longitudinal and scalar photons, for each k, that
may be present in a state.

Fock space To gain the photon interpretation of the quantised fields, we substitute the field
expansions eq. (5.18) in the commutation relations (5.23), having

[ar(k), a
†
s(k)] = −ηrsδ(k − k′)

[ar(k), as(k
′)] = [a†r(k), a

†
s(k

′)] = 0
(5.27)

Observe that for r = s = 0, the commutator is negative and it seems like the creation and
absorption operators must be interchanged. However, effecting only this change results in other
difficulties. Of the several procedures available, we shall follow that due to Gupta and Bleuler.

In the Gupta-Bleuler theory, the operators ar(k), r = 0, 1, 2, 3 are interpreted as creation
operators and a†r(k), r = 0, 1, 2, 3 as annihilation operators. The vaccum state is defined as the
state in which there are no photons of any kind present

ar(k) |0〉 = 0 ∀k, r = 0, 1, 2, 3 (5.28)

or, in position space,
Aµ+ |0〉 = 0 ∀x, µ = 0, 1, 2, 3 (5.29)

The operators a†r(k) create a photon with polarisation r and wave-vector k. A general Fock state
may be represented by

|k1, r1;k2, r2; . . . ;kn, rn〉 = a†r1(k1)a
†
r2(k2) · · · a†rn(kn) |n〉 (5.30)

It follows, from the commutation relations, that photons are bosons, i.e. two photons can exist in
the same state of polarisation and momentum and the state is invariant under any permutation of
the particles.

For now, the theory seems give rise to nonphysical states, those with r = 0, 3 but we will see
that this is not the case. To justify this interpretation of the operators ar and a†r, consider the
Hamiltonian operator given by

H =

∫
d3x N [πµ(x)Aµ(x)− L(x)] (5.31)

On substituting the Lagrangian corresponding to eq. (5.14) and the Fourier expansion of the fields
eq. (5.18), the Hamiltonian becomes

H = −
∫
d3k ωk

∑
r

ηrra
†
r(k)ar(k) =

∫
d3k ωk

3∑
r=0

Nr(k) (5.32)

where the sum is over all 4 polarisation and we have introduced the number operators

Nr(k) = −ηrra†r(k)ar(k) (5.33)

Despite on the minus sign in the N0(k) operator, the energy of the system is positive semi-
definite (H ≥ 0). Indeed, when calculating the expectation value of some state |Ψ〉, by virtue of
the Gupta-Bleuler condition (5.26), we have

〈0|H|0〉 =
∫
d3k ωk

(
2∑

r=1

〈Ψ|Nr|Ψ〉+ 〈0|N0 +N3|0〉

)
=

∫
d3k ωk

2∑
r=1

〈Ψ|Nr|Ψ〉 (5.34)
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where we have used that

〈0|N0 +N3|0〉 = 〈Ψ|a†3(k)a3(k)− a
†
0(k)a0(k)|Ψ〉

(5.26)
= 〈Ψ|a†3(k) [a3(k)− a0(k)]|Ψ〉 = 0 (5.35)

Thus, as a result of the subsidiary condition, in free space observable quantities will involve
transverse photons only. This explains our earlier assertion that longitudinal and scalar photons
are not observed as free particles. Only transverse photons are so observed, corresponding to the
two degrees of freedom (for each k) of the radiation field. In the covariant treatment, although
they don’t show up as free particles, the presence of longitudinal and scalar photons is not ruled
out altogether. Of the resulting additional two degrees of freedom (for each k), one is removed the
condition (5.24). The other can be shown to correspond to the arbitrariness in choice of Lorentz
gauge. More specifically, one can show that altering the allowed admixtures of longitudinal and
scalar photons is equivalent to a gauge transformation between two potentials both of which are
in Lorentz gauges.

For free fields (i.e. no charges present), it is then simplest to work in a gauge such that the
vacuum is represented by the state |0〉 in which no photons of any kind are present. But the
vacuum could also be described by any state containing no transverse and only allowed admixtures
of scalar and longitudinal photons. This description would merely correspond to a different choice
of Lorentz gauge. The situation is entirely analogous for states containing transverse photons.

However, in the presence of charges, we can no longer ignore the longitudinal and scalar photons
as they play an important role as virtual particles and provide a covariant description of the
Coulomb interaction.

5.4 The photon propagator
The commutation relations of the field for two general space time points gives the propagator

for the field, which in this case is represented by a matrix Dµν ,

[Aµ(x), Aν(y)] = 〈0|T {Aµ(x)Aν(y)}|0〉 = iDµν(x− y) (5.36)

In comparison with the Klein-Gordon propagator, we can interpret Dµν(x) as

Dµν(x) = lim
m→0

(−ηµν)∆(x) (5.37)

Obviously, this propagator vanishes outside the light-cone as it does the KG propagator and thus,
causality is preserved.

From eqs. (3.31) and (3.35), the photon propagator reads

iDµν(x) = −iηµν
∫

d4k

(2π)4
e−ikx

k2 + iε
(5.38)

iDµν(k) = −iηµν 1

k2 + iε
(5.39)

The completeness relation eq. (5.20) gives us a relation between the polarization states and the
metric. Substituting this expression in eq. (5.39) gives

Dµν(k) =
1

k2

{
2∑

r=1

εµr (k)ε
ν
s (k) +

[kµ − (kn)nµ][kν − (kn)nν ]

(kn)2 − k2
− nµnν

}
(5.40)

Here we have taken the limit ε→ 0 for simplicity. We can interpret this terms as

Dµν(k) = Dµν
⊥ (k) +Dµν

‖ (k) +Dµν
0 (k)

that correspond to the transverse polarisation, longitudinal polarisation and scalar respectively.
The first, Dµν

⊥ (k) corresponds to the interaction of charges via the transverse field. We focus
our study in the second and third terms, for the non-physical polarisations. First, note that the
sum of Dµν

‖ (k) +Dµν
0 (k) can be expressed as

Dµν
‖,0(k) =

nµnν

(kn)2 − k2
+

1

k2

[
kµkν − (kn)(kµnν + kνnµ)

(kn)2 − k2

]
= Dµν

C (k) +Dµν
R (k) (5.41)

28



5 THE EM FIELD ALM

the reason for these labels will be given in a moment.
Let’s calculate the amplitude of the exchange of a photon between two charges jµA(x) and jµB(y),

this is given by the expression

A =

∫
d4x

∫
d4yjµA(x)Dµν(x− y)jνB(y) =

∫
d4kjµA(−k)Dµν(k)j

ν
B(k) = A⊥ +A‖,0 (5.42)

introducing the Fourier transform of the three quantities. Now, take the part of the propagator
containing only longitudinal and scalar bosons A‖,0. This is given by eq. (5.41), but note that
the terms proportional to kµ or kν will vanish inside the expression for the amplitude by virtue of
current conservation, kµjµ = 0. Then, the only surviving term is Dµν

C (k), which gives

A‖,0 =

∫
d4k jµA(−k)

nµnν
(kn)2 − k2

jνB(k) =

∫
d4k j0A(−k)

1

|k|2
j0B(k) =

∫
d4k

ρA(−k)ρB(k)
|k|2

where we have identified j0(k) = ρ(k), the charge density. Going back to coordinate space,

A‖,0 =

∫
d4x

∫
d4y ρA(x)ρB(x)

∫
d3k

eik·(y−x)

|k|2
∫
dk0e−ik0(y0−x0)

=

∫
d4x

∫
d4y

ρA(x)ρB(x)

4π|x− y|
δ(x0 − y0) (5.43)

which is nothing but Coulomb’s law written in some fancy way. The delta function is very il-
luminating as it tells us that the Coulomb interaction between charges occurs instantaneously.
We conclude that the longitudinal and scalar bosons are responsible for the interaction between
charged particles although they are not physical states.

In a similar way as in the meson propagator, it is useful to visualise it in terms of Feynman
diagrams. For y0 < x0, a photon (of any polarization) is created at y that propagates through
space-time until it is annihilated at x. On the other hand, for y0 > x0, the propagation is pictured
as a photon that goes from x (where it is created) to y (where it is annihilated).

y

x

γ

y

x

γ

t

Figure 5.1: Left: y0 < x0, photon is propagated from y to x. Right: y0 > x0, photon is propagated
from x to y.

In contrast to the fermion propagator, the arrows always go in the direction of time, this is a
conclusion that follows from the fact that the photon is its own antiparticle.
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6 The Ŝ-matrix expansion
So far we have considered the free fields using the Heisenberg picture in which state vectors

are constant in time and operators carry the full time dependence. We now turn to the study of
the interaction and it will be more useful to work in the interaction picture [MS10], where both
the state and the observables evolve with time. The complete Hamiltonian of the system in this
picture can be divided into

H = H0 +HI (6.1)

where HI encodes the interaction and H0 is the part of the Hamiltonian that performs the time
evolution. In this way, the Schrodinger equation reads

i
d

dt
|ψ(t)〉 = HI(t) |ψ(t)〉 (6.2)

where
HI(t) = eiH0tHI(t = 0)e−iH0t (6.3)

Given that the state of the system |ψ(t = t0)〉 = |i〉, eq. (6.2) gives the evolution of |i〉 to a later
time t. In a collision, we represent the initial state much before the interaction as |ψ(t→ −∞)〉 =
|i〉. This state contains the state of the initial particles with definite properties, like mass, charge,
spin... After the interaction has occurred, an the product particles are far apart again, the final
state is |ψ(t→∞)〉 = |f〉. The unitary operator that relates both states is called the Ŝ-matrix
defined as

|ψ(∞)〉 = Ŝ |ψ(−∞)〉 = Ŝ |i〉 (6.4)

A collision can lead to many different final states |f〉, all of these are contained within |ψ(∞)〉.
The transition probability that after the collision, the system is in the state |f〉 is

P (i→ f) = |〈f |ψ(∞)〉|2 =
∣∣∣ 〈f |Ŝ|i〉∣∣∣2 (6.5)

If F is the set of all possible final states |f〉 given that the initial state was |i〉, then we
expect that

∑
f p(i → f) = 1. To check this, note that the set F must be a complete basis, i.e.∑

f |f〉〈f | = I, then ∑
f

P (i→ f) =
∑
f

〈i|Ŝ†|f〉 〈f |Ŝ|i〉 = 〈i|Ŝ†Ŝ|i〉 = 〈i|i〉 = 1 (6.6)

which implies that the S-matrix must be unitary

Ŝ†Ŝ = ŜŜ† = I (6.7)

In order to calculate S we must solve eq. (6.2) for the initial state |i〉, this gives

|ψ(t)〉 = |i〉 − i
∫ t

−∞
dt1HI(t1) |ψ(t1)〉 (6.8)

We encounter the state |ψ(t)〉 in both sides of the equation and usually it is impossible to solve
this analytically but we can find a solution iteratively. Define

∣∣ψ(t)(0)〉 = |i〉 then

∣∣∣ψ(t)(k+1)
〉
= |i〉−i

∫ t

−∞
dtkHI(tk)

∣∣∣ψ(t1)(k)〉 =

k∑
j=0

(−i)j
∫ t

−∞
dtj

∫ tj

−∞
dtj−1 · · ·

∫ t1

−∞
dt0HI(tj) · · ·HI(t0) |i〉

(6.9)
Taking the limit t→∞, the S-matrix is

Ŝ =

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtnT {HI(t1) · · ·H(tn)} (6.10)
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where we have introduced the time-ordering operator, which orders the Hamiltonian so that later
times stand to the left of earlier times and all bosons (fermions) are treated as if their corresponding
fields commute (anticommute). Finally, we can express S in terms of the Hamiltonian density to
implicitly show the covariance of the expression

Ŝ =

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
d4x1 · · ·

∫ ∞

−∞
d4xnT {HI(x1) · · ·H(xn)} (6.11)

The infinite sum can formally be written as

Ŝ = T
{
exp

[
−i
∫
d4xHI(x)

]}
(6.12)

where the expansion of the exponential must be understood as the terms in eq. (6.11) and the
integration is over all space-time.

6.1 Fermi’s golden rule
From eq. (6.12), the transition amplitude A(i → f) is defined as the expectation value of the

first-order approximation of the S-matrix

A(i→ f) = 〈f |S(1)|i〉 = δfi − i
∫ ∞

−∞
dt 〈f |HI(t)|i〉 = δfi − i

∫ ∞

−∞
d4x 〈f |HI(t)|i〉 (6.13)

Inserting the expression for the evolution of the interaction Hamiltonian eq. (6.3) we obtain

A(i→ f) = δfi − i 〈f |HI(0)|i〉
∫ ∞

−∞
d4xe−i(pi−pf )x = δfi + iT̂fi (6.14)

where we have defined the T -matrix as

T̂fi = 〈f |T̂ |i〉 = (2π)4δ4(pi − pf )M (i→ f) (6.15)

Equation (6.14) is known as Fermi’s golden rule that describes the transition rate (probability
of transition per unit time) from one energy eigenstate of a quantum system to a group of energy
eigenstates in a continuum. This transition rate is effectively constant and is proportional to the
strength of the coupling between the initial and final states of the system (described by the square
of the matrix element of the perturbation) as well as the number of states per unit energy in the
continuum.

The T -matrix can be formally defined as∗

Ŝ = T
{
eiT̂
}
≈ I + iT̂ (6.16)

Note that it is not Hermitian, this is a result known as the optical theorem and is summarised as

i(T̂ − T̂ ) = iIm
{
T̂
}
= T̂ T̂ † (6.17)

Note that we must work order by order in perturbation theory. But while the left handside is
matrix elements, the right hand side is matrix elements squared. This means that at order 2 in
some coupling constant, the left hand side must be a loop to match a tree-level calculation on
the right hand side. Thus, the imaginary parts of loop amplitudes are determined completely by
tree-level amplitudes. In particular, we must have the loops – the classical theory by itself,without
loops, violates unitarity.

∗Do not confuse the T {−} of the time ordering with the T̂ -matrix.
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6.2 Wick’s theorem
We must now see hot to obtain from the S-matrix expansion eq. (6.11) the transition amplitude

〈f |Ŝ|i〉 for a particular transition |i〉 → |f〉 in a given order of perturbation. The Hamiltonian
density HI(t) involves the interaction fields, each linear in creation and annihilation operators.
Hence, the expansion eq. (6.11) will describe a large number of processes. However, only certain
terms will contribute to a given transition |i〉 → |f〉. For example, if we want to study Compton
scattering, e−γ → e−γ where HI(t) is described by the QED Hamiltonian eq. (7.5), the terms
containing any creating of a e+ can be eliminated in this calculation. They may also contain terms
that create and annihilate the same particle, these particles are said to be virtual and are only
present in intermediate states.

The calculation can be simplified by writing the Ŝ-matrix expansion as a sum of normal prod-
ucts, all annihilation operators stand to the right of the creation operators. In this way, the
expansion doesn’t cause the emission and absorption of virtual particles. Each of this products
will produce a particular transition |i〉 → |f〉 which can be represented by a Feynman diagram.

The method for expanding a sum of normal products which we shall now describe is due
to Dyson and Wick [Wic50]. We, first of all, extend the definition of normal product made in
eqs. (3.21) and (4.44) to a general formula that encloses both of them

N [Φ1Φ2 · · ·ΦN ] = (−1)pΦ′
1Φ

′
2 · · ·Φ′

N (6.18)

Here, Φ′
1Φ

′
2 · · ·Φ′

N are the operators Φ1Φ2 · · ·ΦN reordered so that all annihilation operators (pos-
itive frequency) stand on the right of creation operators (negative frequency). The exponent p
is the number of interchanges of neighbouring fermionic (dirac) fields. Also, we require that the
normal product is distributive

N [Φ1Φ2 · · ·ΦN +Ψ1Ψ2 · · ·ΨN ] = N [Φ1Φ2 · · ·ΦN ] + N [Ψ1Ψ2 · · ·ΨN ] (6.19)

By this property, the normal product can thus be decomposed as a sum of normal products
containing only creation or destruction operators.

From the definition of the normal product eq. (6.18) we have for two fields that

ΦΨ−N [ΦΨ] =

{
[Φ+,Ψ−] : scalar fields, bosons...
{Φ+,Ψ−} : fermions

(6.20)

In any case, the result of the commutator (or anticommutator) does not involve any creation/an-
nihilation operator, as seen in eqs. (3.7) and (4.35). Therefore, it is a complex number, by taking
its expectation value with the vacuum state we deduce the relation

[Φ+,Ψ−] = 〈0|[Φ+,Ψ−]|0〉 = 〈0|Φ+Ψ−|0〉 = 〈0|ΦΨ|0〉

and the same happens for the anticommutator. Thus, eq. (6.20) can be written as

ΦΨ = N [ΦΨ] + 〈0|ΦΨ|0〉 (6.21)

In the end, we are interested in the time ordering as it is what appears in eq. (6.11). Let’s see
what happens when we take the time ordering of a normal product

T {N [ΦΨ]} = θ(tΦ − tΨ)N [ΦΨ]± θ(tΨ − tΦ)N [ΦΨ] = [θ(tA − tB) + θ(tB − tA)]N [ΦΨ] = N [ΦΨ]
(6.22)

In the first equality, the ± sign reffers to bosons/fermions (see eqs. (3.31) and (4.50)) while in the
second, it has been used that N [ΦΨ] = ±N [ΦΨ] (also + for bosons and − for fermions). The
two signs cancel and we are left with a plus sign in either case. This result is called Rule C’ in
[Wic50]: if two or more fields are labelled with the same time, the time ordering doesn’t change
the order.

Taking the time ordering of eq. (6.21) leads to

T {Φ(x1)Ψ(x2)} = N [Φ(x1)Ψ(x2)] + 〈0|T {Φ(x1)Ψ(x2)}|0〉 (6.23)
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For convenience, the last terms is written as

ΦΨ = 〈0|T {Φ(x1)Ψ(x2)}|0〉 (6.24)

which is read as, the contraction of Φ(x1) and Ψ(x2). Being a vacuum expectation value it will
vanish unless one of the operators creates a particle which the other absorbs. The non-vanishing
contractions are just the Feynman propagators:

φ(x1)φ
†(x2) = i∆(x1 − x2) (3.31)

ψα(x1)ψ
†
β(x2) = iSαβ(x1 − x2) (4.49)

Aµ(x1)A
ν(x2) = iDµν(x1 − x2) (7.21)

Contractions with independent fields or of the same type are identically 0.

Teorema 3 (Wick). A time product can be into a sum of normal products as

T {Φ1Φ2 · · ·ΦN} = N [Φ1Φ2 · · ·ΦN ]

+

N∑
i 6=j=0

ΦiΦjN
[
Φ1

∨i,j
· · ·ΦN

]

+

N∑
i 6=j=0

N∑
k 6=l=0

ΦiΦjΦkΦlN
[
Φ1

∨i,j,k,l
· · · ΦN

]
+ · · · (6.25)

In the right hand side, the sum is made over all the possible contractions and it continues
increasing the number of contractions. The symbol ∨i, j denotes that Φi and Φj are excluded from
the normal product. The proof of this relation can be made by induction starting from eq. (6.23).

However, looking at the Dyson expansion in eq. (6.11), the n-th term will be proportional to

T {HI(x1)HI(x2) · · ·HI(xn)} = T
{

N [Φ1Φ2 · · ·]x1
N [Φ1Φ2 · · ·]x2

· · ·N [Φ1Φ2 · · ·]xn

}
which looks familiar to eq. (6.25) except that the fields are the same but evaluated at different
times. Wick extended his theorem to include this type of time ordered products, he concluded that

T
{

N [Φ1Φ2 · · ·]x1
N [Φ1Φ2 · · ·]x2

· · ·N [Φ1Φ2 · · ·]xn

}
= T {(Φ1Φ2 · · · )x1(Φ1Φ2 · · · )x2 · · · (Φ1Φ2 · · · )xn}

(6.26)
where all equal-time contractions are excluded from the sum!

Equations (6.25) and (6.26) represent the desired result, enabling us to expand each term in
the Ŝ-matrix expansion (6.11) into a sum of generalised normal products. Each of these normal
products corresponds to a definite process, characterised by the operators not contracted which ab-
sorb and create the particles present in the initial and final states respectively. The non-vanishing
contractions which occur in these generalised normal products are the Feynman propagators cor-
responding to virtual particles being emitted and reabsorbed in intermediate states.

6.3 The Cluster Decomposition
Let’s remark a consequence of Wick theorem: any contraction of two fields at equal times

vanish; this is nothing but part of a more general principle known as the Cluster Decomposition
[Wei95].

Principle 1. If multi-particle processes α1 → β2, . . . , αN → βN are studied in N very distant
laboratories, then the Ŝ-matrix of the overall process factorises, this is

S{αi}→{βj} =
∑

(−1)pSC
α1β1

SC
α2β2
· · · (6.27)

if for all of the particles in states αi and βi, with i 6= j, are at great spatial distance from αj and
βj.
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The sum in eq. (6.27) is over all different ways of partitioning the particles in the state α into
clusters {α1, α2, . . . }, and likewise, a sum over all ways of partitioning the particles in state β into
clusters {β1, β2, . . . }; not counting as different those that merely arrange particles withing a given
cluster or permute whole clusters. The exponent p counts the number of fermion interchanges.
The superscript C in the decomposition accounts for connected.

In simpler words, this principle says that the probabilities for two experiments done at the
same time far appart cannot depend on each other.

For example, if the states α and β contain just a single particle, then the only term in the sum
of eq. (6.27) is

Sα→β = SC
α→β = δαβ

The delta function must be interpreted as a product of Dirac and Kronecker deltas for each of the
properties that the labels α and β encode. This is the trivial part in the Ŝ definition in eq. (6.14),
equivalent to the δij , for a process in which one particle doesn’t interact with anything else.

It is convenient to reexpress this in momentum space. For a scattering of particles with mo-
mentum {pi} into {p′j}, one can show that the connected parts of the Ŝ-matrix should be of the
form

SC
p1p2···→p′1p

′
2
= δ4(p1 + p2 + · · · − p′1 − p′2 − · · · )Cp1p2···→p′1p

′
2

(6.28)

where Cp1p2···→p′1p
′
2

is just some coefficient that does not contain any delta. The only delta functions
are global and impose 4-momentum conservation.

Take a look at what we have in the Dyson expansion of the Ŝ-matrix in eq. (6.11). Each term of
the expansion contains an ordered (time and normal) product of the Hamiltonian operator which
in turn can be written in terms of creation and annihilation operators∗ that act on different times.
This product, by the cluster decomposition principle, can be divided into a sum of connected parts∫ ∞

−∞
dt1 · · · dtnT {HI(t1) · · ·HI(tn)} = (6.29)

∑
(−1)p

∑
n1+···nv=n

n!

n1! · · ·nv!

v∏
j1

∫ ∞

−∞
dtj1 · · · dtjnT

{
HI(t1) · · ·HI(tnj

)
}

(6.30)

The first sum is over all possible v clusters like in eq. (6.27), the second sum is over all the possible
ways of combining this particles with a factor to count equal particles of each type. Inserting this
into eq. (6.11) we obtain

Sα→β =
∑

(−1)p
v∏

j=1

S
Cj

α→β (6.31)

where

S
Cj

α→β =

∞∑
n=0

(−i)n

n!

∫ ∞

−∞
dt1 · · · dtnT {HI(t1) · · ·HI(tn)} (6.32)

We see that SCj

α→β is calculated by a very simple prescription: SCj

α→β is the sum of all contributions
to the Ŝ-matrix that are connected, in the sense that we drop all terms in which any initial or final
particle or any operator HI(t) is not connected to all others by a sequence of particle creations and
annihilations. Compare this last sentence to the last paragraph in the previous section and find,
if you can, the 7 differences.

∗In fact, any operator O acting on particles can be expressed as a sum of products of creation and annihilation
operators, see Section 4.2 in [Wei95] for a complete proof.
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7 Quantum Electrodynamics (QED)
Quantum Electrodynamics is the theory that describes the interaction between electrons (and

positrons) with photons. For now we have discussed how those particles evolve independently,
the evolution is encoded in the respective Lagrangian densities eqs. (4.18) and (5.14). The QED
Lagrangian will obviously contain those terms plus an extra one LI that encodes the interaction
of both particles.

7.1 Interaction Lagrangin
Previously, in section 4, we noted that the Dirac Lagrangian was invariant under phase trans-

formation of the form
ψ −→ eiαψ

and this in fact, for α = e (the electron charge), give us the conservation of charge theorem. To these
types of transformations that do not depend on the position are named global phase transformation.
There is, however, a more general one that considers space-time dependent parameter, those are
local phase transformation,

ψ −→ eieθ(x)ψ

where θ(x) is an arbitrary function and e the charge of the electron (introduced for convenience).
When we consider this type of change, the Dirac Lagrangian (4.14) is no longer invariant. The

mass term remains intact, but because the derivative ∂µ does not commute with eieθ(x), the kinetic
terms suffers a change

iψγµ∂µψ −→ iψγµ∂µψ − e(∂µθ)ψψ (7.1)

We require the Lagrangian to be invariant under local phase transformations. Thus, we may
have to generalise the concept of derivative ∂µ to covariant derivative Dµ in such a way that

Dµψ −→ eieθ(x)Dµψ

It is defined as
Dµ ≡ ∂µ − ieAµ (7.2)

where Aµ is the electromagnetic potential. This is an ansaltz and there is no proof for this, it is
just constructed using the minimal terms to obtain the desired result.

With the covariant derivative, the Dirac Lagrangian, with the replacement ∂µ → Dµ, acquires
a new term

L = ψ(i /D −m)ψ = ψ(i/∂ −m)ψ + eAµψγ
µψ (7.3)

Comparing the new piece of the Lagrangian with the term of the EM Lagrangian (see eq. (5.14))
that contains the charge, we can make the identification of

jµ = −eψγµψ (7.4)

as the electric current-charge vector.
If we now add the Dirac Lagrangian (eq. (4.18)) and the EM Lagrangian (eq. (5.14)) we obtain

the Lagrangian for the QED theory

LQED = ψ(i/∂ −m)ψ − 1

4
FµνF

µν − 1

2
(∂µA

µ)2 + eAµψγ
µψ

= ψ(i /D −m)ψ − 1

2
(∂νAµ)(∂

νAµ) (7.5)

That can be divided into the three parts

LDirac = ψ(i/∂ −m)ψ (7.6a)

LEM =
1

2
(∂νAµ)(∂

νAµ) (7.6b)

LI = −jµAµ = eAµψγ
µψ (7.6c)
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This last part creates all the physics, all the interactions between photons, electrons and positrons.
We should calculate the expression for the interaction Hamiltonian, as this is what we will need

to evaluate the Ŝ-matrix element. This is easily seen to be

HI = −LI = −eAµψγ
µψ (7.7)

because there is no term containing a derivative in the interaction.

7.2 Feynman rules
The so called Feynman rules, provide us a way to determine the form of the matrix element

〈f |Ŝ|i〉, for a given initial and final state, without having to calculate everything from first princi-
ples. We will start from the expression of the Ŝ in the Dyson expansion (6.11) and look, order by
order, the expression for Ŝ. For instance, the n-th order element of the Ŝ is

〈f |S(n)|i〉 = (−i)n

n!

∫ ∞

−∞
dx41 · · ·

∫ ∞

−∞
dx4n 〈f |T {H(x1) · · ·H(xn)}|i〉 (7.8)

First of all, let’s do a quick reminder on the fields and creation/annihilation operators that
we have discovered in the previously. A general field ψl that represent particles of type l can be
represented as

ψl(x) =

∫
d3p√
(2π)3

∑
r

[
ul,r(p)al,r(p)e

−ipx + vl,r(p)a
†
l,r(p)e

ipx
]

(7.9)

where r is used to represent the spin, helicity or polarization of the particle l, ul,r and vl,r are
the coefficients of the transform that depend on the type of field and al,r (a†l,r(p)) is the creation
(destruction) operator for a particle of type l with momentum p and characterised by r. Concretely,
we write here the expression for the boson, Dirac and EM fields calculated before:

φ(x) =

∫
d3p√

(2π)32Ep

[
a(p)e−ipx + a†(p)eipx

]
= φ+(x) + φ−(x) (3.8)

ψ(x) =

∫
d3p√

(2π)32Ep

∑
r=±

[
cr(p)ur(p)e

−ipx + d†r(p)vr(p)e
ipx
]
= ψ+(x) + ψ−(x) (4.33)

Aµ =

∫
dk√

(2π)32ωk

3∑
r=0

[
εµr (k)ar(k)e

−ikx + ε∗µr (k)a†r(k)e
ikx
]
= A+µ(x) +A−µ(x) (5.18)

Also, let’s recap the action of the fields on a Fock state:

Bosons:

{
φ+(x) : annihilates a boson at x
φ−(x) : creates a boson at x

Fermions:


ψ+(x) : annihilates a fermion of mass m at x
ψ− : creates an antifermion of mass m at x
ψ
+
(x) : annihilates an antifermion of mass m at x

ψ
−

: creates a fermion of mass m at x

Photons:

{
A+µ(x) : annihilates a photon at x
A−µ(x) : creates a photon at x
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And in momentum space:

Bosons:

{
a(p) : annihilates a boson with momentum p

a†(p) : creates a boson with momentum p

Fermions:


cr(p) : annihilates particle with momentum p and helicity r
dr(p) : annihilates antiparticle with momentum p and helicity r
c†r(p) : creates particle with momentum p and helicity r
d†r(p) : creates antiparticle with momentum p and helicity r

Photons:

{
ar(k) : annihilates a photon with wavevector k and polarisationr
a†r(k) : creates a photon with wavevector k and polarisationr

It is quite important to keep the previous two tables in mind for the posterior work.
To end this summary, remember that a general Fock state |i〉 can be written as a combination

of creation operators that act on the vacuum state (that which is annihilated by all destruction
operators and fields) as

|i〉 = |p1, r1;p2, r2; . . . ;pn, rn〉 = a†ln,rn(pn) · · · a†l2,r2(p2)a
†
l1,r1

(p1) |0〉 (7.10)

7.2.1 In position space

With all said and done, we are ready to start calculating the form of the Ŝ-matrix element
〈f |Ŝ|i〉 in position space, representing the initial and final state as some product state like in
eq. (7.10), the expectation value inside the integral becomes

〈0|
[
al′n,r′n(p

′
n) · · · al′2,r′2(p

′
2)al′1,r′1(p

′
1)T {H(x1) · · ·H(xn)} a

†
ln,rn

(pn) · · · a†l2,r2(p2)a
†
l1,r1

(p1)
]
|0〉

where H(x) is the interaction Hamiltonian which is nothing but a product of certain fields, and
indeed, a product of other creation and annihilation operators. By virtue of Wick’s theorem,
the time ordering product is already normal ordered but there are still creation operators on the
right that come from the initial state that can be moved to the left. In the process of moving all
annihilation operators to the right, we can exclude those contributions having a term like al,r(p) |0〉
which vanishes by definition (likewise with its adjoint). The only contributions are those arising
from the delta functions when we commute two adjoint operators (see eqs. (3.7) and (5.27) and ??).
The factors are summarised here:

(a) Pairing of an initial particle |pi, ri〉 with a field ψl(x) in H(x),

[ψ†
l (x), a

†
ri(pi)]∓ =

1√
(2π)3

e−ipixul(pi) (7.11a)

(b) Pairing of an initial antiparticle |pi, ri〉 with a field adjoint ψl(x) in H(x),

[ψ
†
l (x), a

†
ri(pi)]∓ =

1√
(2π)3

e−ipixvl(pi) (7.11b)

(c) Pairing of a final particle
∣∣p′

j , r
′
j

〉
with a field adjoint ψl(x) in H(x),

[ar′j (p
′
j), ψl(x)]∓ =

1√
(2π)3

eip
′
jxul(p

′
j) (7.11c)

(d) Pairing of a final antiparticle
∣∣p′

j , r
′
j

〉
with a field ψl(x) in H(x),

[ar′j (p
′
j), ψl(x)]∓ =

1√
(2π)3

eip
′
jxvl(p

′
j) (7.11d)
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|pi, ri〉
x

(a) Annihilation of |pi, ri〉 at x.

|pi, ri〉
x

(b) Annihilation of anti |pi, ri〉
at x.

x ∣∣p′
j , r

′
j

〉
(c) Creation of

∣∣p′
j , r

′
j

〉
at x.

x ∣∣p′
j , r

′
j

〉
(d) Creation of

∣∣p′
j , r

′
j

〉
at x.

|pi, ri〉
∣∣p′

j , r
′
j

〉
|pi, ri〉

∣∣p′
j , r

′
j

〉
(e) Pairing of an initial with a
final (anti)particle.

p1

xj xk

(f) Propagation of a virtual par-
ticle from xj to xk.

Figure 7.1: Feynman rules in position space (time flows from left to right).

(e) Pairing of a final particle
∣∣p′

j , r
′
j

〉
with an initial particle |pi, ri〉 (or antiparticle),

[ar′j (p
′
j), a

†
ri(pi)]∓ = δrir′jδ

3(pi − p′
j) (7.11e)

(f) Pairing of a field ψl(xj) with an adjoint field ψn(xk),

[ψl(xj), ψm(xk)]∓ = −i∆(xj − xk) (7.11f)

All of this results are better described in a diagrammatic formalism in fig. 7.1. Note that the
arrows are pointing in the direction of particles moving and opposite to the direction an antiparticle
moves. In cases where a particle is its own antiparticle (photon, real bosons...) the arrow should
be omitted. Also, since every field or field adjoint in H must be paired with something else, the
total number of incoming and outgoing lines at a certain vertex is equal to the total number of
fields factors in H.

To calculate the contribution to the Ŝ-matrix for a given process at order n, we must carry out
the following steps:

1.- Draw all Feynman diagrams containing n vertices, a line coming from the left for each initial
particle and a line going to the right for each antiparticle. Joining the vertices, draw any
number of intermediate steps as required to give each vertex the proper number of attached
lines. Label each vertex with a spacetime coordinate xµ.

2.- For each vertex, include a factor (−igj), where gj is the coupling constant multiplying the
product of fields in H. For each initial particle a factor eqs. (7.11a) and (7.11b), for each
external line a factor eqs. (7.11c) and (7.11d), for each non interacting line a factor eq. (7.11e)
and for each internal line connecting vertices a factor eq. (7.11f).

3.- Integrate the product of all these factor over the coordinates x1, x2, . . . of each vertex.

4.- Add up the results obtained from each Feynman diagram.∗

I will not focus anymore on the theoretical development on the theory as it is much more
complicated to explain that it really is. In Section 7 as well as in Appendix D, we will see examples
of the theory were we apply the Feynman rules in position and momentum space to derive the
amplitude M of various processes.

7.2.2 In momentum space

Usually, the Feynman rules in position space are not used as their form is much more compli-
cated than in momentum space. This is because in position space we obtain delta factors like in
eq. (7.11e) which can be integrated without problems, but also exponentials multiplied which can

∗The factor 1/n! doesn’t have to be included because for a given diagram there are n! ways to order the initial
and final particles which give the same amplitude. However, there are cases where extra combinatoric factors must
be included, for instance, if there are m particles of the same type in some state then we obtain an extra factor of
m!.
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also be integrated giving other delta functions. Thus, going to momentum space, reduces not only
the difficulty but also the length of the expressions.

I will not derive everything from first principles, but rather eunmarate the Feynam rules needed
to calculate amplitudes:

1.- Draw all Feynman diagrams for a given order n (i.e. all diagrams with n vertex) and label each
vertex with a off-mass shell 4-momentum qµ.

2.- For each vertex, include a factor (−igj) that accounts for the interaction strength as before
together with a factor (2π)4δ4(

∑
i∈incoming pi−

∑
o∈outgoing p

′
o) that ensures 4-momentum con-

servation at each vertex.

3.- For each external line, include the corresponding factor eqs. (7.11a) and (7.11b) if the particles
are in the initial state or eqs. (7.11c) and (7.11d) if the particles are in the final state; all of
them without the exponential!

4.- For each internal line, add the factor −i∆(q) where ∆(q) is the propagator of the virtual
particle in momentum space.

5.- Integrate the product of all these terms over the internal 4-momentum (2π)−4d4qi carried by
virtual particles and sum over all the possibilities for spin, helicity or polarisation.

6.- Drop the trivial term i(2π)4δ4(
∑

i∈initial pi −
∑

f∈final pf ) in eq. (6.15) that corresponds to the
T̂ element. What is left is the amplitude M for that process.

7.- Add up all the amplitudes for each Feynman diagram.

In a diagram with I internal lines and V vertices, the number of independent 4-momenta that
are not fixed by the delta functions is I− (V −C) where C is the number of connected parts (delta
functions left in the graph). Then, the number of independent loops is

L = I − V + C (7.12)

which is defined as the maximum number of internal lines that can be cut without disconnecting
the diagram. In particular, a tree graph is one without loops; after taking the delta functions into
account there are no momentum-space integrals left for such graphs.

7.3 1st order diagrams
These are the ones generated by the first order of the Ŝ-matrix,

S(1) = −i
∫
d4xT {HI(x)} = ie

∫
d4xT

{
ψ /Aψ

}
(7.13)

where we have used the expression for the interaction Hamiltonian (7.7). The time ordering is
equal to the normal ordering by Wick’s theorem, since all equal time contractions are 0. Then, the
first order Ŝ-matrix is

S(1) = ie

∫
d4xN

[
ψ /Aψ

]
= ie

∫
d4xN

[
(ψ

+
+ ψ

−
)( /A

+
+ /A

−
)(ψ+ + ψ−)

]
(7.14)

which has 8 possible terms, each of them with one vertex, two fermion lines and one photon line.
The complete set of diagrams can be seen in fig. 7.2.

All of them, despite being dynamically allowed, are kinematically forbidden. Take as an example
the process e− → e−γ, in the CM the energy of the initial state is m while in the second it must be
greater than m because there is a photon and a moving electron. Therefore, energy and momentum
are not conserved during this transitions.
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e−

γ

e+

(a) ψ+
/A
+
ψ+

e+

γ

e+

(b) ψ+
/A
+
ψ−

e−

γ

e+

(c) ψ+
/A
−
ψ+

e+

γ

e+

(d) ψ+
/A
−
ψ−

e−

γ

e−

(e) ψ−
/A
+
ψ+

e−

γ

e+

(f) ψ−
/A
+
ψ−

e−

γ

e−

(g) ψ−
/A
−
ψ+

e−

γ

e+

(h) ψ−
/A
−
ψ−

Figure 7.2: First order diagrams.
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p−

p+

k

p′−

p′+

e−

e+

e−

e+

(a) Annihilation

p−

p′−

p+ p′+

k

e− e−

e+ e+

(b) Scattering

Figure 7.3: Bhabha scattering.

7.4 An example: Bhabha scattering
This makes reference to the electron-positron scattering process

e− + e+ −→ e− + e+

Both the initial and final states are composed by an electron and a positron, the terms in the
Ŝ-matrix expansion that generate this transition are

(ψ
−
ψ−)x1

(ψ
+
ψ+)x2

, (ψ
+
ψ−)x1

(ψ
−
ψ+)x2

plus the exchange of x1 ↔ x2. The photon field is contracted an thus propagates through an
internal line.

The Feynman diagrams are shown in fig. 7.3 for the first (a) and second (b) term respectively.
In fact, we can obtain the second from the first, take the incoming positron in a and move it to the
final state and then punt the outgoing electron in the initial state. This exchange took 3 crossing
of fermion lines so we expect a minus sign to arise between the amplitudes of A and B.

From the Feynman diagrams, using the Feynman rules, we can extract the form of the ampli-
tude, which is

Ms =
ie2

s
(u′γαv′)(vγαu) (7.15)

Mt = −
ie2

t
(v′γαv)(u′γαu) (7.16)

where s = (p− + p+)
2 and t = (p− − p′−)2. We have used the simplified notation u′ = ur′(p

′
−),

u = ur(p−), v′ = vs′(p
′
+) and v = vs(p+). The total amplitude of this process is just the sum of

the previous two terms.
The average amplitude over the spins of the initial and final particles is

|M |2 =
1

4

∑
r,r′,s,s′=±

|M |2 =
1

4

∑
r,r′,s,s′=±

|Ms|2 + |Mt|2 + MsM
∗
t + M ∗

s Mt (7.17)

where the factor of 4 comes from the number of total number of initial polarizations, two for the
e− and two for the e+.

We should look at those terms one by one:

a) Take the first of the term, the absolute value can be expressed as MsM ∗
s , where the complex

conjugate is equal to the conjugate transpose since Ms is a number, so

M ∗
s = M †

s =
ie2

s
(u′γαv′)†(vγαu)

† =
ie2

s
(v′γαu′)(uγαv)
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Thus, the product gives

|Ms|2 =
e4

4s2

∑
r,r′,s,s′=±

(u′aγ
α
abv

′
b)(vcγcd,αud)(v

′
eγ

α
efu

′
f )(ugγgh,αvh)

=
e4

4s2

(
(−1)5

∑
r′

u′fu
′
a

)(
(−1)2

∑
s′

v′bv
′
e

)(
(−1)3

∑
s

vhvc

)(∑
r

udug

)
γαabγcd,αγ

α
efγgh,α

=
e4

4s2
(/p

′
− +m)fa(/p

′
+
−m)be(/p+ −m)hc(/p− +m)dgγ

α
abγcd,αγ

α
efγgh,α

=
e4

4s2
tr
[
(/p

′
− +m)γα(/p

′
+
−m)γβ

]
tr
[
(/p+ +m)γα(/p− −m)γβ

]
In the next step we must use that the trace of any product of an odd number of gamma matrices
vanishes, thus

|Ms|2 =
e4

4s2

[
tr
(
/p
′
−γ

α
/p
′
+
γβ
)
− 4m2ηαβ

] [
tr
(
/p+γα/p−γβ

)
− 4m2ηαβ

]
and using the properties of the matrices we end up with

|Ms|2 =
8e4

s2
{
(p′+p+)(p

′
−p−) + (p′+p−)(p

′
−p+) +m2

[
(p′+p

′
−) + (p+p−)

]
+ 2m4

}
(7.18)

b) There is no need to calculate from the beginning the scattering term since it can be obtained
from the previous by the exchange p′− ↔ −p+ and p+ ↔ −p′−, thus

|Mt|2 =
8e4

t2
{
(p′+p

′
−)(p+p−) + (p′+p−)(p

′
−p+)−m2

[
(p′−p−) + (p+p

′
+)
]
+ 2m4

}
(7.19)

c) Finally, the next two terms can be evaluated at once by noting that MsM ∗
t + M ∗

s Mt =
2Re {MsM ∗

t + M ∗
s Mt}. At the end of the day, after a lenghty calculation, we obtain

MsM
∗
t =

8e4

st

{
(p′−p+)(p

′
+p−)−

m2

2

[
(p′−p−) + (p′+p+)− (p+p−)− (p′−p

′
+)
]
+m4

}
(7.20)

which is real and therefore the contribution of the two terms is two times this.

It is quite interesting to pause for a moment and observer the incredible symmetry of the
previous three expressions...

Back in the game, the previous are easily written in terms of the Mandelstam variables

2p−p+ = 2p′+p
′
− = s− 2m2 (7.21a)

2p−p
′
− = 2p′+p+ = 2m2 − t (7.21b)

2p−p
′
+ = 2p′+p

′
− = 2m2 − u (7.21c)

where we have used that p2 = m2. With this substitutions we obtain

|Ms|2 =
2e4

s2
[
t2 + u2 + 4m2(s− t− u) + 8m4

]
|Mt|2 =

2e4

t2
[
s2 + u2 + 4m2(t− s− u) + 8m4

]
MsM

∗
t =

2e4

s2
[
u2 + 4m2(s+ t− u) + 4m4

]
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8 SCATTERING THEORY ALM

8 Scattering theory
In its one-body formulation, the scattering problem is concerned with the scattering of particles

by a centre of force. We consider a uniform beam of particles—whether electrons, or α-particles,
or planets is irrelevant—all of the same mass and energy incident upon a fixed target (see fig. 8.1).
It will be assumed that the force falls off to zero for very large distances.

Figure 8.1: Scattering of particles by a fixed target at the origin, the resulting beam is deflected
by an angle dΩ.

The Ŝ-matrix is the probability amplitude for the transition i → f , but what does it have
to do with the transition rates ans cross-sections measured in experiments? [Wei95]. The proper
way to approach these problems is by studying the way experiments are actually done, using wave
packets to represent particles localised far from each other before a collision, and then following
the time-history of these superpositions of multi-particle states. In what follows we will instead
give a quick and easy derivation of the main results.

We consider our whole system of physical particles to be enclosed in a volume V and suppose
that the interaction is turned on for only a time T . The probability that a system, which is in
state i before the interaction is found, afterwards, in state f is

P (i→ f) =

[
(2π)3

V

]Ni+Nf

|S(i→ f)|2 (8.1)

where Ni and Nf counts the number of particles in the initial and final state respectively. We shall
define the final-state interval df in such a way that the total number of states in this range is

dNf =

[
(2π)3

V

]−Nf

df (8.2)

Hence, the total probability for the system to wind up in the range df of final states is

dP (i→ f) = P (i→ f)dNf =

[
(2π)3

V

]Ni

|S(i→ f)|2df =

[
(2π)3

V

]Ni [
(2π)4δ4(pf − pi)

]2 |M (i→ f)|df

(8.3)
We will restrict to cases where no subset of the particles in the state f (other than the state

itself) has precisely the same 4-momentum as some corresponding subset of the particles in the
state i. In simpler words, we are eliminating the possibility of the Kronecker delta in the definition
of the Ŝ amplitude eq. (6.14).

Our introduction of the box allows us to interpret the square of the delta function in eq. (8.3)
as (here we have skipped some mathematical subtleties)[

(2π)4δ4(pf − pi)
]2

= V T (2π)4δ4(pf − pi)
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8 SCATTERING THEORY ALM

In the limit of large T and V , the transition probability eq. (8.3) is simply proportional to the
time T during which the interaction is acting, with the coefficient that may be interpreted as a
differential transition rate

dw(i→ f) =
dP (i→ f)

T
= (2π)3

[
(2π)3

V

]Ni−1

(2π)4δ4(pf − pi)|M (i→ f)|2df (8.4)

Here, df refers to the differential over all the phase space of the possible particles normalised as

df =

Ni∏
i=1

1

2Ei

Nf∏
f=1

d3pf
2Ef

(8.5)

so
dw(i→ f) =

V 1−Nf

(2π)3Nf−4
|M (i→ f)|2δ4(pf − pi)ΠNi

i=1

1

2Ei
Π

Nf

f=1

d3pf
2Ef

(8.6)

This is the master formula which is used to interpret calculations of Ŝ-matrix elements in terms of
predictions for actual experiments.

8.1 Lifetime and decay rate
In the case where Ni = 1 in eq. (8.6), w is interpreted as a decay to Nf particles: A →

1 + 2 + · · ·+Nf . The total decay width is defined as

ΓA =
∑
f∈F

Γ(A→ f) =
1

2EA

∫
|M (A→ f)|2(2π)4δ4

pA − Nf∑
j=1

pj

 Nf∏
j=1

d3pj
(2π)32Ej

(8.7)

the sum is taken over all the possible decays kinematically allowed for the particle A. [CDG09]
The quantity ΓA has dimensions of E−1 (s−1), it is related to the lifetime of the particle by

τA =
1

ΓA
(8.8)

The quantities in the given expression are taken with respect to the CM frame and note that ΓA

is not Lorentz Invariant, i.e. it depends on the frame we are measuring, however τA as previously
defined gives the shortest lifetime.

The quantity Γ(A→ f), expresses the decay width for an specific process A→ f . If the total
decay width is known, we can define the branching ratio for a given process as

BR(A→ f) =
Γ(A→ f)

ΓA
(8.9)

which gives the probability that this particular decay occurs given that we are observing the particle
A. Obviously, the sum of all the branching ratios adds up to 1.

Decay into two particles For a process A→ 1 + 2, the rate of this process is

Γ =

∣∣pCM
1

∣∣
32π2m2

A

∫
|M (A→ 1 + 2)|2dΩ (8.10)

where pCM
1 is the momentum of the first scattered particle, and therefore pCM

2 = −pCM
1 and can

be calculated with the equation ∣∣pCM
1

∣∣ = 1

2mA
λ1/2(mA,m1,m2) (8.11)
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8.2 Cross-section
The incident beam is characterised by specifying its intensity Φ (also called flux density), which

gives the number of particles crossing unit area normal to the beam in unit time. As a particle
approaches the centre of force, it will be either attracted or repelled, and its orbit will deviate
from the incident straight-line trajectory. After passing the centre of force, the force acting on the
particle will eventually diminish so that the orbit once again approaches a straight line. In general,
the final direction of motion is not the same as the incident direction, and the particle is said to
be scattered. The cross section for scattering in a given direction, σ, is defined by the ratio

σ =
number of transitions per unit time

incoming flux
(8.12)

The cross section has dimensions of area and it can be interpreted as the effective target area that
sees a particle in the beam.

The numerator is given by w(i → f) while the denominator by the incoming flux Ψ = v/V .
In the collision of two particles, A+B → 1+2+ · · ·+Nf , from the expression for eq. (8.6), where
Ni = 2, we find

σ(i→ F) = I

4λ1/2(s,mA,mB)

∫
|M (i→ f)|2(2π)4δ4

pA + pB −
Nf∑
j=1

pj

 Nf∏
j=1

d3pj
(2π)32Ej

(8.13)

The λ function in the denominator can also be expressed as

λ1/2(s,mA,mB) =
√
(pApB)2 − (mAmB)2 =

{
CM :

√
s
∣∣pCM

1

∣∣
LAB : mB

∣∣pLAB
1

∣∣ (8.14)

Also, the factor I counts the permutations between identical particles in the initial state. Ff there
are n particles in the initial state, n1 of type one, n2 of type two... such that n1 + n2 + · · ·nv = n
then

I =
1

n1!n2! · · ·nv!
(8.15)

This is a consequence of the cluster decomposition, look at eq. (6.30) and note that this factor is
identical to the first coefficient in the sum. The factor of n! in the numerator just cancels with the
one in the definition of the Ŝ-matrix and all we are left is with the value I.

The final equation for the cross section eq. (8.13) can’t usually be integrated totally and the
result is given in terms of the differential cross section defined as

σ =

∫
dσ =

∫
dσ

dΩ
dΩ (8.16)

where dΩ is the solid angle. If the scattering is symmetric along the azimutal angle ϕ, then this
can be integrated and express the differential cross section as differential over cos θ

dσ

d cos θ
=

dσ

dΩ

∫ 2π

0

dϕ = 2π
dσ

dΩ
(8.17)

Two by two This is the most studied case, where the number of initial and final particles is the
same, 1 + 2→ 3 + 4. In the CM frame, the expression for the differential cross-section is

dσ

dΩ
=

I

64π2s

∣∣∣pCM
f

∣∣∣∣∣pCM
i

∣∣ |M1+2→3+4|2 (8.18)

here s = (E1 + E2)
2 by eq. (2.12) and pi & pf correspond to the initial and final momentum of

1 of the particles in each state (because we analyse the situation from the CM so in modulus the
momentum of both particles is the same).
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8 SCATTERING THEORY ALM

However, eq. (8.18) is only valid in the CM frame. Indeed, it is possible to express the differential
cross-section using only LI quantities. By using that dt = 2

∣∣pCM
1

∣∣∣∣pCM
3

∣∣d(cos θ), where we have
used the definition of t eq. (2.3b) in the CM, it follows that [Tho11]

dσ

dt
=

I

64πs
∣∣pCM

i

∣∣2 |M1+2→3+4|2 (8.19)

The expression in the LAB frame in terms of the solid angle is

dσ

dΩ
=

I

64π2
∣∣pLAB

1

∣∣m2

∣∣pLAB
3

∣∣2∣∣pLAB
3

∣∣(EA +mB)− E3

∣∣pLAB
1

∣∣ cos θ |M1+2→3+4|2 (8.20)

but if the mass of the incoming particle mA can be neglected then this simplifies to

lim
mA→0

dσ

dΩ
=

I

64π2

(
1

m2 + E1(1− cos θ)

)2

|M1+2→3+4|2 (8.21)
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A Natural units
It is common in the realm of the elementary particle physics to redefine units so that speed of

light and Plank’s constant become equal to one: c = 1 and ~ = 1. This imposes two constraints on
the three kinematical units and, therefore, leaves us a free choice for one of the three kinematical
units. The units of electrical charge, also, can be and are redefined (see below). Such system of
units is often referred to as Natural Units (natural for the elementary particle physics, that is).
The kinematical unit of the choice is energy, E, and it is usually measured in eV (keV, MeV, GeV,
TeV).

Once we fixed c = 1 and ~ = 1, all other kinematical units can now be expressed in terms of
units of energy. The relation between a unit in the IS and the equivalent in NU is

[φ]SI = ~pcq[φ]NU (A.1)

The conversion factor for the most important units are given in the following table:

Quantity SI NU Conversion factor

Mass kg E c−2

Length m E−1 ~c

Time s E−1 ~

Velocity m · s−1 1 c

Energy kg ·m2 · s−2 E 1

Linear momentum kg ·m · s−1 E c−1

Angular momentum kg ·m · s−1 1 ~

Force kg ·m · s−2 E2 (~c)−1

Potential kg ·m2 · s−2 E c1

Charge C 1 ~cε0
Current C · s−1 E ~

Fine structure 1 1 (~cε0)−1

For the charge, it is also customary to choose ε0 = 1. Then, the fine structure constant in
natural units has the form

α =
e2

4π
=

1

137
(A.2)

B Noether’s theorem

C Harmonic oscillator
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D Toy model
Consider the Lagrangian density

L = gφA(x)φB(x)φC(x) (D.1)

where φA(x), φB(x) and φC(x) are real scalar fields and g is the so called coupling constant with
units of energy.

This Lagrangian encodes the interaction between 3 scalar particles of different mass, although
this is not seen physically, the results are illustrative of the methods applied. The interaction is
draw as a Feynman diagram in Figure D.1. This is the only possible way the three particles can
interact, in a point were the three particles collide. This point is called a vertex.

B

A

C

Figure D.1: Schematic interaction of the Toy Model Lagrangian.

However, the diagram in Figure D.1 does not represent a physical process. All particles going
to a point or appearing from it? Indeed, we need more vertices to represent a real process. As
an example, consider the scattering process AA → BB. We have studied this process from a
kinematical point of view in Section 2, were in Figure 2.1 the interaction is shown as a magic ball
where magically the initial particles interact to give the products. Now, we know the way the
particles interact because we have the Lagrangian so, the lowest order diagrams (the process with
smallest number of vertices) that we can draw are shown in Figure D.2.

p1

p3

qC

p2 p4

A B

A B

p1

qC

p2

A B

A B

p3
p4

Figure D.2: Lowest order diagrams for the scattering process AA→ BB.

See that in each of the vertices there is a particle of type A, B and C, with C propagating
as a virtual particle from one vertex to the other. We refer to the term virtual particle when we
consider particles which are not seen in the interaction but could have appeared as a mid-step to
the final products. These virtual particles exist for a brief period of time which is related to the
energy of the particle by the Heisenberg relation

∆E∆t ∼ 1 (D.2)

Another property is that they are off-shell, the modulus square of its four momentum is no longer
the mass, i.e. p2 6= m2.

Let’s return to the practical matter, we want to calculate MAA→BB at first order so we should
add the amplitudes of the two possible processes showed in Figure D.2. The Feynman rules for
this model are:

• For each vertex (fig. D.1) add a ig.
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• For each external line (initial and final particles) multiply by a 1 (may sound stupid, but it
is just to follow the standard rules).

• For each internal line multiply by the corresponding propagator for the scalar field φ(x),

i∆(q) =
i

q2 −m2

• Impose 4-momentum conservation on each vertex, if pin is the total momentum of the in-
coming particles and pout the outgoing then

(2π)4δ4(pin − pout)

• Integrate over the whole range of momentum for each internal particle considering al the
above inside it ∫

F
d4q

(2π)4

• Once the integration is completed, multiply by i(2π)−4 and remove the delta function con-
cerning total 4-momentum conservation of the initial and final states, �����

δ4(pi − pf ).

• The expression obtained after this process, if no errors have been made, is the amplitude M .

50


	Notation
	Why a Quantum Field Theory?
	Classical Field Theory
	Quantization
	Symmetries and conservation laws

	Collisions in Special Relativity
	Mandelstam variables
	Decays

	The Klein-Gordon field
	Quantization
	Normal ordering
	Causality, time ordering and Feynamn propagator
	Complex field

	Dirac Field
	Solutions to Dirac equation
	Stationary particles
	Free particles

	Quantization
	The fermionic propagator

	The EM field
	The classical field
	Covariant formulation
	Quantization
	The photon propagator

	The -matrix expansion
	Fermi's golden rule
	Wick's theorem
	The Cluster Decomposition

	Quantum Electrodynamics (QED)
	Interaction Lagrangin
	Feynman rules
	In position space
	In momentum space

	1st order diagrams
	An example: Bhabha scattering

	Scattering theory
	Lifetime and decay rate
	Cross-section

	References
	Natural units
	Noether's theorem
	Harmonic oscillator
	Toy model

